
총 45개
-
PCA & SVD2025.01.131. PCA (주성분 분석) PCA는 데이터의 분산(variance)을 최대한 보존하면서 서로 직교하는 새 기저(축)를 찾아, 고 차원 공간의 표본들을 선형 연관성이 없는 저차원 공간으로 변환하는 기법입니다. 데이터의 분산을 최대로하는 새로운 기저를 찾기 위해서는 데이터 행렬 A의 공분산 행렬을 구해야 합니다. 공분산 행렬의 고유분해(Eigendecomposition)를 통해 가장 큰 고유값 몇 개를 고르고, 그에 해당하는 고유벡터를 새로운 기저로 하여 데이터 벡터들을 정사영시키면 PCA 작업이 완료됩니다. 2. SVD (특이값 분...2025.01.13
-
인공지능과 기계학습 기말정리2025.01.131. 신경망의 오차 출력계층의 오차와 은닉계층의 오차를 구하는 방법에 대해 설명합니다. 출력계층의 오차는 목표값과 출력값의 차이이지만, 은닉계층에는 목표값이 존재하지 않기 때문에 출력계층의 오차를 재조합하여 은닉계층의 오차를 구합니다. 이러한 방식을 역전파라고 합니다. 2. 경사하강법 오차함수의 기울기에 따라 가중치를 조정하는 경사하강법에 대해 설명합니다. 오차함수로는 제곱오차 방식을 사용하며, 기울기의 부호에 따라 가중치를 반대 방향으로 조정합니다. 오버슈팅을 방지하기 위해 기울기가 완만해질수록 조금씩만 움직이도록 합니다. 3. ...2025.01.13
-
2024년 김영평생육원 경영정보시스템 전체 1등 A+의 만점 받은 과제 _인공지능의 개념과 기술, 활용사례에 대해 조사하시오2025.01.211. 인공지능의 개념 인공지능은 '지능을 기계로 구현한 것'이다. 지능은 문제를 해결할 수 있는 능력으로 정의될 수 있다. 따라서 인공지능은 문제를 해결하기 위해서 스스로 작업을 진행할 수 있는 능력으로 정의할 수 있다. 학계에서 바라보는 인공지능의 진화 단계는 크게 ANI, AGI, ASI 세 가지로 나누어 설명할 수 있다. 2. 인공지능 기술: 기계학습과 딥러닝 인공지능은 컴퓨터에게 데이터를 학습시켜 마치 사람처럼 스스로 의사결정을 할 수 있게 한다. 기계학습은 사람이 특성인자를 선정하는 것이 중요하지만, 딥러닝은 데이터에서 모...2025.01.21
-
방송대_대학수학의이해_중간과제물_2023학년도_2학기2025.01.251. CAS와 직접연산 CAS와 직접연산을 모두 경험해본 입장에서 수학 학습에 컴퓨터 소프트웨어를 이용하는 것을 찬성한다. 기계학습에 필요한 수학을 공부하기 위해 '기계처럼 기계학습하기'라는 스터디에 참여했으며, 이론 공부와 연습문제 풀이를 진행했다. 2. 기계학습 스터디 기계학습 스터디의 과제인 2장 연습문제를 풀기 위해 2023년 9월 1일 python의 sympy모듈을 사용했다. 연습문제 13번은 f(x)에서 난수를 생성하여 초깃값 X0=2.1을 얻었을 때 theta = theta -p*g를 연속적으로 사용하여 얻는 점 x1,...2025.01.25
-
Generative AI를 사용하는 방식 - Fine Tunning 및 Prompt Engineering2025.01.141. 생성형 AI의 기본 개념 생성형 AI는 기계 학습의 발전을 통해 새로운 정보와 아이디어를 창조해내는 인공지능의 형태를 말합니다. 이는 단순히 데이터를 처리하고 분석하는 것을 넘어, 다양한 패턴과 연관성을 학습하여 새롭고 창의적인 결과물을 만들어냅니다. 생성형 AI는 예술, 디자인, 문학 등 다양한 창조적 분야에서 새로운 가능성을 열어주고 있습니다. 2. 생성형 AI의 주요 용도 생성형 AI는 예술과 엔터테인먼트 산업에서 두각을 나타내며, 새로운 창작의 지평을 열고 있습니다. 예술 분야에서는 독창적인 음악이나 미술 작품을 만들어...2025.01.14
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 인공지능의 개념과 역사 인공지능(Artificial Intelligence, AI)은 기계가 인간과 유사하게 정보를 처리하고, 복잡한 문제를 해결할 수 있는 능력을 부여하는 과학기술 분야입니다. 1950년대에 공식적으로 탄생한 이 분야는 앨런 튜링의 '튜링 테스트'를 시작으로 다양한 학문적, 산업적 발전을 거쳐 현재에 이르고 있습니다. 초기 단계에서는 논리 추론과 규칙 기반 시스템이 주를 이루었으나, 컴퓨터 하드웨어의 발전과 데이터 처리 능력의 증가로 인해 현재에는 기계학습, 딥러닝 등이 주된 연구 분야로 자리 잡고 있습니다....2025.01.18
-
확률론(probability theory)의 효과적 활용법 중 한 가지를 주제로 선택하여, 장점을 주장하고 논리적 근거를 예시 등을 구체적으로 제시한 후, 자신만의 고유한 의견으로 마무리 요약하여 기술하시오2025.01.231. 베이즈 정리 베이즈 정리는 사건의 발생 확률을 새로운 정보에 따라 갱신하는 수학적 방법이다. 기본적으로 베이즈 정리는 사전 확률(prior probability)을 바탕으로, 새로운 데이터(또는 증거)를 통해 사후 확률(posterior probability)을 계산하는 과정이다. 베이즈 정리는 다양한 상황에서 적용될 수 있는 유연한 도구로, 복잡한 문제에 대한 해결책을 제공한다. 베이즈 정리의 가장 큰 장점은 유연성과 실시간 데이터 반영이다. 기존의 통계적 접근법은 고정된 데이터를 바탕으로 예측을 하지만, 베이즈 정리는 새로...2025.01.23
-
언어 변수와 헤지, 퍼지 집합 연산, 포함관계에 대해 서술하시오2025.01.271. 언어 변수 언어 변수는 수치 대신 언어적 표현을 사용하여 정보를 나타내는 방식입니다. 이는 모호하거나 불확실한 상황을 다루는 데 적합한 도구로, 사람들의 일상적인 의사소통 방식과 유사합니다. 언어 변수의 주요 특징은 모호성 및 가변성 반영, 맥락에 따른 유연한 해석 가능, 사람의 사고방식과 밀접한 연관성, 수학적 모델링 도구로의 활용 등입니다. 2. 헤지 연산 헤지 연산은 언어 변수의 의미를 조정하여 정보를 더 명확하고 세밀하게 전달하는 데 사용되는 기법입니다. 이를 통해 언어 변수의 강도나 범위를 조절하여 모호한 상황에서도 ...2025.01.27
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.01.241. 인공지능의 개념 인공지능은 단순히 기술의 발전을 넘어 인간의 인지적 능력을 모방하거나 대체하는 기술로 정의되며, 이는 정보 처리, 문제 해결, 학습 능력 등 인간 고유의 지능적 특성을 포함한다. 약한 인공지능은 특정한 작업이나 문제를 해결하기 위해 설계된 시스템이며, 강한 인공지능은 인간과 유사한 수준의 전반적인 지능을 갖춘 시스템을 의미한다. 2. 인공지능 기술 인공지능 기술의 발전은 기계학습과 딥러닝을 중심으로 이루어졌다. 기계학습은 데이터를 이용해 스스로 학습하는 알고리즘을 개발하는 기술이며, 딥러닝은 인공신경망을 기반으...2025.01.24
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04