
총 17개
-
MATLAB 머신러닝, 딥러닝, 강화학습 예제 실습하기2025.05.161. MATLAB MATLAB은 MathWorks사에서 개발한 공학용 소프트웨어로, 행렬을 기반으로 계산, 함수나 데이터를 그림으로 그리는 기능 및 프로그래밍을 통한 알고리즘 구현 등을 제공하며, 수치계산이 필요한 과학 및 공학 분야에서 다양하게 사용되는 프로그램이다. 2. 머신러닝 머신러닝은 인공지능의 하위 분야 중 하나로, 데이터를 기반으로 컴퓨터가 스스로 학습하고 예측하는 알고리즘을 연구하고 개발하는 기술 분야이다. 알고리즘의 유형에는 지도학습, 비지도학습(자율학습), 강화학습 이렇게 크게 세가지 정도가 있다. 3. 딥러닝 딥...2025.05.16
-
교육심리학) 조작적 조건형성의 특징과 인간관, 그리고 응용방법을 서술하시오(A+리포트)2025.05.131. 조작적 조건형성의 특징 조작적 조건형성은 교육심리학에서 중요한 개념으로서, 개인의 행동을 형성하고 조절하는 과정을 설명하는 모델이다. 조작적 조건형성의 주요 특징은 조작적 자극의 역할, 강화와 효과, 행동의 조작성, 예측성과 제어성 등이다. 이를 통해 개인의 학습과 행동을 이해하고 개선할 수 있다. 2. 조작적 조건형성의 인간관 조작적 조건형성은 인간의 본성적 욕구와 목표지향성, 학습과 적응 능력, 자기효능감과 성취감, 예측과 제어 능력 등 인간관과 깊은 연관성을 갖는다. 이러한 인간의 특성들이 조작적 조건형성의 원리와 상호작...2025.05.13
-
장애 영유아의 자폐 범주성 장애와 교수 방법2025.01.201. 자폐 범주성 장애의 판단 기준과 증상 자폐 범주성 장애는 사회적 의사소통 및 상호작용의 부족, 행동·관심·활동의 제한적이고 반복적인 패턴이 특징이다. 사회적 측면에서 전형적이지 않은 방식으로 부모에게 달라붙고 눈 맞춤이 어려우며, 다른 사람과의 관계 형성이 어렵다. 행동 측면에서는 변화에 대한 저항감이 크고 특정 무생물에 과도한 애착을 보이거나 반복적인 행동을 한다. 2. 자폐 범주성 장애의 교수 방법 자폐 범주성 장애 학생을 위한 교수 방법으로는 장애 특성을 고려한 개별화된 교육과정 운영, 시각적 접근과 강화 방법이 있다. ...2025.01.20
-
유아교육론_1. 다음은 유아교사의 역할과 자질에 대한 내용입니다. 아래 문제를 잘 읽고 답안을 작성하시오. 2. 다양한 발달이론 중 한 가지를 선택하여 관련 내용을 간단하게 요약하고, 이와 관련되어 실생활에서 접목할 수 있는 사례를 2가지 이상 들어 설명하시오. (3)2025.01.251. 유아교사의 역할 지원자의 역할이 가장 중요하다고 생각한다. 유아교사가 유아들을 관찰하고 지원하는 것은 매우 중요하다. 창의성 향상과 문제해결 능력 개발을 위해 유아교사의 지원자 역할이 필수적이다. 2. 유아교사의 자질 유아교사에게 필요한 자질로는 성찰과 학습이 중요하다. 성찰을 통해 초심을 잃지 않고 올바른 지도와 훈육을 할 수 있으며, 지속적인 학습을 통해 유아들의 변화하는 요구에 맞는 안정적이고 일관적인 교육을 제공할 수 있다. 3. 반두라 사회학습이론 반두라 사회학습이론은 인간의 행동이 외적 자극에 의해 수동적으로 결정되...2025.01.25
-
강화학습을 이용한 unslotted CSMA_CA backoff 학습법2025.04.251. IEEE 802.15.4 프로토콜 IEEE 802.15.4 프로토콜은 저전력 및 저속 WSN(Wireless Sensor Network)의 특성을 달성하기 위한 프로토콜입니다. MAC계층은 unslotted, slotted 두가지의 CSMA/CA알고리즘을 지원하며, 본 논문에서는 Unslotted CSMA/CA 알고리즘을 개선하고자 합니다. 2. Unslotted CSMA/CA 알고리즘 Unslotted CSMA/CA 알고리즘은 시간동기화 없이 패킷을 전송하지만, 주변 트래픽이 혼잡해질수록 패킷 충돌확률이 높아져 PDR이 급격...2025.04.25
-
만성질환에 대한 적응적 치료 전략에서의 강화학습2025.05.111. 강화학습의 개념과 의의 강화학습은 환경과의 상호작용을 통해 최적의 의사 결정을 수행하는 방법을 학습하는 머신러닝 기법입니다. 강화학습은 만성질환 환자의 상태 변화에 적응하여 최적의 치료 전략을 개발하는데 활용됩니다. 2. 강화학습의 응용 분야 강화학습은 환자의 생체 반응과 약물 투여의 상호작용을 고려하여 최적의 약물 투여 전략을 탐색하고, 환자의 위험 요인과 생활 습관을 고려하여 개인 맞춤형 예방 전략을 개발합니다. 3. 강화학습의 장점 강화학습은 개별 환자의 특성과 응답에 따라 최적화된 치료 전략을 제시하며, 시뮬레이션을 통...2025.05.11
-
인공지능의 역사적 발전과 현재 동향2025.05.161. 인공지능 연구의 역사 인공지능 기술의 역사적 발전 과정을 살펴보며 현대에 이르기까지의 중요한 이정표와 혁신적인 발견들을 중점적으로 다룹니다. 앨런 튜링의 '컴퓨터와 지능' 논문에서 제시된 튜링 테스트는 인공지능 연구의 초기 방향을 제시했으며, 1950년대와 1960년대에는 인공지능의 기초적인 개념과 알고리즘이 개발되었습니다. 1980년대에는 신경망과 딥러닝 같은 현대 인공지능 기술의 기반이 형성되었고, 최근에는 인공지능 기술이 빠르게 발전하며 다양한 분야에서 혁신적인 변화를 가져오고 있습니다. 2. 인공지능 관련 연구 동향 딥...2025.05.16