총 26개
-
중공실 PMMA 벌크중합2025.01.131. 라디칼 중합 메커니즘 라디칼 중합 반응은 개시반응, 전개반응, 종결반응으로 총 3단계로 진행됩니다. 개시 반응에서는 개시제 AIBN에 열을 가하면 라디칼이 생기면서 nitrogen 가스를 생성하고, 생성된 라디칼과 첫 번째 단량체 MMA가 반응하여 MMA의 탄소에 라디칼이 생깁니다. 전개 반응에서는 개시 반응한 뒤로 연쇄적으로 MMA를 붙여 넣어서 고분자 사슬을 만듭니다. 종결 반응은 라디칼이 소멸되는 단계로, Methyl methacrylate는 보통 recombination이 아닌 disproportionation반응을 통...2025.01.13
-
고분자(PMMA) 중합 실험 보고서 (화학공학실험)2025.01.131. 고분자 중합 실험 실험 목표는 Solution polymerization을 통해 Methyl Methacrylate(MMA)를 Poly Methyl Methacrylate(PMMA)로 중합하고, 중합반응의 conversion과 생성된 PMMA의 분자량, 분자량 분포를 GPC를 사용하여 측정, 분석하며 이에 대한 원리를 이해하는 것입니다. 또한 중합반응 공정조건과 생성되는 고분자의 분자량 분포 사이의 상관관계를 이해하는 것입니다. 2. 고분자 중합 반응 원리 고분자 중합은 라디칼 중합 반응으로 이루어지며, 개시반응, 성장반응, ...2025.01.13
-
폴리스티렌의 합성 결과보고서2025.01.141. 폴리스티렌 (polystyrene) 폴리스티렌은 스티렌의 라디칼 중합으로 얻어지는 비결정성의 고분자로, 스티롤 수지라고도 하며 무색 투명한 열가소성 수지이다. 스티렌 단량체의 중합체로 이루어지며 약품에 잘 침식되지 않는다. 폴리스티렌은 플라스틱 중에서 가장 가공하기 쉽고 높은 굴절률을 가지며 투명하고 단단한 성형품이 된다. 2. 폴리스티렌의 제법 폴리스티렌은 단독으로 중합되거나 다른 단량체와 공중합체를 형성할 수 있다. 일반적인 폴리스티렌은 유기과산화물의 개시제를 사용하여 스티렌의 라디칼중합으로 합성되며, 공업적인 제조방법으로...2025.01.14
-
[고분자합성실험] 메틸메타크릴레이트의 벌크중합 예비+결과보고서(A+)2025.01.291. 메틸메타크릴레이트의 벌크중합 메틸메타크릴레이트(MMA)의 벌크중합을 실험하였다. 벌크중합은 용매나 분산매체를 사용하지 않고 단량체만으로 또는 소량의 개시제를 가하여 중합체를 얻는 라디칼 중합법이다. 개시제로 AIBN을, 연쇄 이동제로 n-부틸메르캅탄을 사용하였다. 중합시간과 개시제 양을 변수로 하여 실험을 진행하였고, 중합시간이 길어질수록, 개시제 양이 많을수록 생성물의 점도가 증가하는 것을 확인하였다. 이는 중합시간이 길어질수록, 개시제 양이 많을수록 분자량이 증가하기 때문이다. 실험과정에서 발생할 수 있는 오차 원인들도 고...2025.01.29
-
[고분자합성실험] 메틸메타크릴레이트의 현탁중합 예비+결과 보고서(A+)2025.01.291. 고분자 화합물 합성 단량체를 라디칼중합시켜 고분자 화합물을 얻는 중합방법에서 용액중합은 중합반응에서 용매를 사용하여 벌크중합의 단점을 보완하였다. 그러나 용매를 사용함으로써 생산원가나 작업성에 문제점이 많아 용매대신에 물과 같은 비활성의 매질을 사용하여 중합하는 방법을 현탁중합 또는 지주중합이라 한다. 단량체를 비활성의 매질속에서 0.01~1mm 정도입자로 분산시켜 중합하면 중합반응결과 얻어지는 고분자화합물은 비드같은 입자로 되어 침강하므로 이를 비드중합이라고도 하며 벌크중합이나 용액중합과 같은 반응기구로 반응이 진행된다. 2...2025.01.29
-
메틸메타크릴레이트의 벌크중합 예비+결과보고서2025.01.271. 메틸메타크릴레이트의 벌크중합 이번 실험에서는 AIBN을 개시제로 이용하여 MMA를 벌크중합을 통하여 PMMA를 중합하였다. 벌크중합은 고분자 합성공정 중 가장 단순하고 직접적인 방법이다. 단량체와 단량체의 녹는 소량의 개시제, 그리고 분자량 조절을 위한 사슬이동제만을 선택적으로 투입하며, 반응이 진행됨에 따라 단량체와 고분자만이 반응계의 구성요소가 된다. 벌크중합의 장점은 불순물이 포함되지 않은 순수한 고분자를 얻을 수 있다는 점이다. 하지만 온도 조절의 어려움이 가장 큰 문제점이다. 라디칼 중합 반응은 대부분이 발열반응이여서...2025.01.27
-
[결과보고서] 메틸메타크릴레이트(MMA)의 벌크중합(bulk polymerization)2025.01.271. 메틸메타크릴레이트(Methylmethacrylate)의 벌크중합 메틸메타크릴레이트(Methylmethacrylate)의 벌크중합을 통해 고분자인 PMMA를 중합하여 라디칼 중합 중 벌크 중합의 특징을 이해하였다. 벌크중합은 용매나 분산매체를 사용하지 않고 단량체만으로 또는 소량의 개시제를 가하여 중합체를 얻는 라디칼 중합법이다. 이 중합방법은 고순도 및 높은 분자량의 중합체를 얻을 수 있는 장점이 있지만 반응 시 열제거가 어렵고 생성된 중합체가 단량체에 용해되지 않으며 반응계의 점도가 높아 기술적인 문제점이 있다. 본 실험에서...2025.01.27
-
[결과보고서] 스타이렌(Styrene)의 용액중합(solution polymerization)2025.01.271. 용액중합(solution polymerization) 용액중합은 용매중에서 모노머를 중합시키는 방법으로, 사용되는 용매가 모노머와 생성된 고분자를 모두 용해시키면 균일계 용액중합(homogeneous solution polymerization)이라 하고, 모노머만 용해시키는 경우를 불균일계 용액중합(heterogeneous solution polymerization)이라 한다. 용액중합은 발열반응에 의한 반응열을 제거할 수 있고, 사용되는 용매만 잘 선택하면 중합도를 조절할 수 있는 장점이 있다. 그러나 용매중에서 성장 라디칼...2025.01.27
-
스타이렌과 메틸메타크릴레이트(MMA)의 공중합2025.01.271. 공중합 반응과 공중합 방정식 공중합 반응에서 단량체 M1과 M2가 라디칼 중합하여 공중합체를 생성할 때, 성장하고 있는 공중합체 사슬의 반응성이 사슬의 말단에 존재하는 라디칼에만 의존한다고 가정하면 성장반응은 4가지로 나타낼 수 있다. 각 성장반응은 비가역적이라고 가정하면, 단량체 M1과 M2가 없어지는 속도는 식 (5)와 식 (6)으로 각각 표시된다. 식 (7)은 M1*이 M2*로 전환하는 속도와 M2*가 M1*로 전환하는 속도가 같다고 가정한 것이다. 단량체 반응성비 r1과 r2는 식 (8)과 식 (9)로 정의된다. 식 (...2025.01.27
-
[예비보고서] 메틸메타크릴레이트(MMA)의 벌크중합2025.01.271. 메틸메타크릴레이트(Methylmethacrylate)의 벌크중합 메틸메타크릴레이트(Methylmethacrylate)의 벌크중합은 용매나 분산매체를 사용하지 않고 단량체만으로 또는 소량의 개시제를 가하여 중합체를 얻는 라디칼 중합법이다. 벌크중합은 기체 및 고체 상태에서도 가능하지만 주로 액체 상태에서 행해지는 경우가 많다. 이 중합방법을 간편하면서도 고순도 및 높은 분자량의 중합체를 얻을 수 있는 장점이 있지만 반응 시 열제거가 어렵고 경우에 따라서는 생성된 중합체가 단량체에 용해되지 않으며 또한 반응계의 점도가 높아 중합에...2025.01.27