1. 딥러닝 모델링 성능 향상 기법
1.1. 연속형 모델 손실함수
1.1.1. 손실함수
손실함수는 신경망 모델의 예측값과 실제값 간의 오차를 정량화하는 척도이다. 이는 신경망 모델의 성능을 평가하고 학습을 진행하는 데 필수적인 요소이다. 적절한 손실함수를 선택하는 것은 모델 성능 향상을 위해 매우 중요하다.
연속형 모델의 경우, 평균 제곱 오차(Mean Squared Error, MSE)가 가장 일반적으로 사용되는 손실함수이다. MSE는 예측값과 실제값의 차이를 제곱하여 평균한 값으로, 모델의 예측 정확도를 최대화하도록 학습을...
2024.11.25