
총 15개
-
수학 보고서 고등학교2024.09.191. 무선 통신 시스템의 이해 1.1. 정보통신의 배경 정보 혁명은 전자계산기에 의해 정보의 처리를 중심으로 하고, 나아가서 자동제어와 통신기술 등의 광범위한 기술혁신 및 오퍼레이션 리서치, 인간공학, 경영공학 등에 의해서 이루어지는 경영혁신을 말한다. 우리 인류는 지난 약 5000년 동안 몇 차례의 혁명을 겪으면서 그 삶의 방식에서 급변을 맞이해 왔으며, 정보 혁명은 산업 혁명 시대를 넘어 우리 지식사회가 한 단계 더 성장하게 된 발판이라 할 수 있다. 컴퓨터의 급격한 보급과 이들의 인터넷 연결, 고성능 휴대용 컴퓨터, 그리고 ...2024.09.19
-
행렬 실생활2025.01.151. 서론 1.1. 행렬의 개념과 역사 행렬은 1857년 영국의 수학자 아서 케일리(Arthur Cayley)에 의해 처음 도입되었다. 케일리의 사고는 1683년 독일의 수학자 라이프니츠(Gottfried Wilhelm Leibniz)가 3개의 미지수를 지닌 일차연립방정식에서 행렬식을 먼저 사용한 것으로부터 영향을 받았다. 이후 크래머(Gabriel Cramer)가 행렬식을 재발견하면서 행렬에 대한 연구가 활발하게 진행되었다. 실베스터(James Joseph Sylvester)는 1850년 직사각형 수의 배열에 '행렬'이라는 명칭...2025.01.15
-
행렬대각화와 실생활2025.01.151. 서론 1.1. 행렬대각화의 개념 및 중요성 행렬대각화는 행렬을 대각선 형태로 나타내는 과정이다. 이를 통해 행렬의 성질과 특성을 보다 쉽게 파악할 수 있으며, 행렬 연산을 간단하게 수행할 수 있다. 행렬대각화는 다양한 응용 분야에서 중요한 역할을 한다. 우선, 행렬대각화를 통해 행렬식을 간단히 계산할 수 있다. 행렬식은 행렬의 고유한 특성을 나타내는 지표로, 대각화된 행렬의 대각성분들의 곱으로 나타낼 수 있다. 이를 통해 복잡한 행렬식 계산을 단순화할 수 있다. 또한 행렬대각화는 선형 방정식 체계의 해를 구하는 데 활용된...2025.01.15
-
행렬대각화와 실생활2025.01.151. 서론 1.1. 행렬과 실생활의 연결고리 행렬은 실생활에서 다양한 방식으로 활용되고 있다. 먼저 행렬은 여러 객체 간의 관계를 간결하고 체계적으로 나타낼 수 있어 먹이사슬, 사회 연결망 등 다양한 분야에 적용된다. 또한 행렬은 연립방정식을 쉽게 표현하고 계산할 수 있게 해주므로 경제, 경영, 공학 등의 영역에서 활용된다. 더불어 행렬 대각화는 학급 결속력 분석, 생태계 변화 예측 등에 활용되어 실생활 문제 해결에 기여한다. 이처럼 행렬은 수학 이론을 넘어 다양한 분야에서 실용적으로 활용되고 있는 것이다. 행렬은 복잡한 현상을 ...2025.01.15
-
Matlab으로 배우는 공학수치해석2024.10.161. MATLAB 개요 1.1. MATLAB 소개 MATLAB은 Matrix Laboratory를 뜻하는 말로써, 수치해석, 행렬 연산, 신호처리 및 간편한 그래픽 기능 등을 통합하여 고성능의 수치계산 및 결과의 가시화 기능을 제공하는 프로그램이다. MATLAB은 행렬과 벡터를 기본 자료로 사용하여 기능을 수행하는 계산환경을 제공한다. 기본적으로 행렬을 자료로 다루기 때문에 dimensioning이 필요하지 않으며 통상적인 프로그래밍 언어들을 사용하여 프로그램을 작성하지 않고도 쉽게 수치 계산을 수행할 수 있다. MATLAB의 가...2024.10.16
-
생명과학에서의 행렬의 이용2025.03.181. 서론 1.1. 생명과학에서의 행렬 활용 개요 생명과학 분야에서 행렬은 다양한 방식으로 널리 활용되고 있다. 행렬은 생명체의 개체군 동태 모델링, 생물정보학, 유전체 분석, 단백질 구조 예측 등 광범위한 연구 영역에서 중요한 역할을 담당한다. 행렬은 생명체의 성장, 변화, 상호작용 등을 수학적으로 표현하고 분석하는 데 매우 유용한 수학적 도구이기 때문이다. 개체군 동태 모델링에서는 지수 성장 모델, 로지스틱 성장 모델, 연령 구조 모델 등 다양한 행렬 기반 모델이 활용된다. 이를 통해 개체군의 성장 과정과 변화를 예측하고 ...2025.03.18
-
벡터의활용2025.04.011. 서론 1.1. 벡터의 활용 개요 벡터는 크기와 방향을 가진 양을 나타내는 개념으로, 1차원 배열로 표현된다. 이에 비해 행렬은 숫자들의 2차원 배열이다. 벡터는 스칼라곱과 벡터합 연산이 가능하지만, 행렬은 이러한 연산이 불가능하다. 따라서 벡터와 행렬은 서로 다른 특성을 가지고 있다. 벡터는 1개 이상의 수로 표현되므로 하나 이상의 정보를 포함할 수 있다. 이에 비해 스칼라는 하나의 숫자로 표현되어 하나의 정보만을 담고 있다. 물리량에서 속력은 스칼라이지만, 속도는 벡터이다. 속도는 크기와 방향을 모두 나타내는 반면, 속...2025.04.01
-
공업역학의 이론 중에 항공기에서 적용될 수 있는 예시에 대해 조사하시오2025.04.061. 서론 공업역학은 다양한 산업 분야에서 필수적인 기초 학문이다. 특히 항공기 설계와 운용에 있어서 공업역학의 이론은 매우 중요한 역할을 한다. 항공기의 거동을 해석하고, 제어하며, 운동 경로를 설정하는 등의 핵심 과정에 공업역학의 주요 개념들이 활용되기 때문이다. 본 보고서에서는 공업역학의 대표적인 이론인 벡터, 행렬, 피드백 제어 시스템 등이 항공기 분야에서 어떻게 적용되고 있는지를 살펴보고자 한다. 항공기 설계와 운용에 필수적인 공업역학의 주요 이론들을 소개하고, 각 이론이 항공기 분야에서 구체적으로 활용되는 사례들을 상...2025.04.06
-
벡터의 실생활 사용2024.10.181. 공업수학의 효과적 활용법 1.1. 벡터(vector)의 효과적 활용 벡터(vector)는 공업수학에서 가장 강력하고 유용한 도구 중 하나이다. 크기와 방향을 동시에 표현할 수 있는 벡터의 특성은 복잡한 물리적 현상과 공학 문제를 간단하고 직관적으로 나타낼 수 있게 해준다. 이런 벡터의 장점은 물리학, 그래픽스, 로보틱스 등 다양한 공학 분야에서 극대화된다. 물리학에서는 벡터를 이용해 물체의 운동을 효과적으로 표현할 수 있다. 위치, 속도, 가속도 등을 벡터로 나타내면 운동 법칙을 간단한 수식으로 정리할 수 있다. 또한 힘의...2024.10.18
-
고1 수학과 관련된 경영수학2024.10.181. 정보통신과 수학 1.1. 정보통신의 배경 정보 혁명은 전자계산기에 의해 정보의 처리를 중심으로 하고, 나아가서 자동제어와 통신기술 등의 광범위한 기술혁신 및 오퍼레이션 리서치, 인간공학, 경영공학 등에 의해서 이루어지는 경영혁신을 말한다. 우리 인류는 지난 약 5000년 동안 몇 차례의 혁명을 겪으면서 그 삶의 방식에서 급변을 맞이해 왔다. 그리고 정보 혁명은 산업 혁명 시대를 넘어 우리 지식사회가 한 단계 더 성장하게 된 발판이라 할 수 있을 것이다. 컴퓨터의 급격한 보급과 이들의 인터넷 연결, 고성능 휴대용 컴퓨터, 그리...2024.10.18