총 25개
-
미적분 에펠탑2024.09.231. 미적분과 건축 1.1. 미적분이란? 미적분은 미분과 적분의 수학적 이론을 말하며, 1670년대 후반에 라이프니츠가 만들었고, 약 10년 정도 후에 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠나 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피[해석학]를 구하기 위해서 사용되었다. 우리가 살고 있는 세상은 모든 것이 움직이고 변한다. 미분은 이처럼 움직이는 대상을 다루며, 반면 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상을 다룬다. 1...2024.09.23
-
미분 구조물2024.10.071. 미적분의 이해 1.1. 미적분이란? 미적분이란 미분과 적분의 수학적 이론을 말한다. 미적분은 17세기 후반 라이프니츠에 의해 발명되었고, 약 10년 뒤 뉴턴이 유율법을 만들어 미적분에 이용하였다. 라이프니츠와 뉴턴의 방법 모두 무한소 문제를 해결하기 위한 것이었으며, 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적, 부피 등을 구하기 위해 사용되었다. 미분은 움직이는 대상을, 적분은 움직이지 않는 도형의 넓이, 부피 등을 다룬다. 세상의 모든 것이 움직이고 변하는데 움직이는 대상을 연구하는 미분이 17세기에야 비로...2024.10.07
-
미적분을 활용한 효소반응속도2024.10.281. 미분의 역사와 활용 1.1. 미분의 역사 1.1.1. 고대 그리스의 아르키메데스 고대 그리스의 아르키메데스는 미적분학의 선구자로 평가받는다. 그는 기하학적 계산을 통해 구와 원기둥의 부피를 구하는 등 다양한 계산 방식을 개발했다. 특히 아르키메데스는 무한소 개념을 활용하여 곡선 아래 면적을 계산하는 방법을 제시했는데, 이는 적분학의 기초가 되었다. 또한 그는 거리와 속도의 관계를 밝혀내었고, 면적을 구하는 문제와 접선을 구하는 문제가 역관계에 있다는 사실을 발견했다. 이처럼 아르키메데스는 고대 그리스에서 미적분학의 기초를 ...2024.10.28
-
유리함수실생활2024.10.271. 함수의 역사와 고찰 1.1. 함수의 정의 및 역사 함수의 역사 및 정의는 오래되지 않았지만 수학의 근간이 되는 중요한 개념이다. 수학사의 주요 인물들이 함수에 대한 정의와 이론을 체계화하는 데 기여했다."" 라이프니츠는 1673년 곡선과 관련된 변량을 기술하기 위해 함수를 제안했으며, 이는 오늘날 도함수로 불리는 개념의 시초가 되었다. 변화량과 변화량 사이의 관계를 기술하는 함수는 미적분의 기반이 되었다. 이후 베르누이와 오일러가 변수와 상수로 표현하는 방식을 제시했고, 디리클레, 데데킨트 등이 함수의 정의를 더욱 발전시켰...2024.10.27
-
합성함수 실생활2024.10.271. 1학기 온라인 공동 교육과정 [심화수학Ⅰ] 운영 계획 1.1. 심화수학Ⅰ 교과 교수·학습 운영 계획 1.1.1. 방정식과 부등식 방정식과 부등식은 수학에서 매우 중요한 개념이다. 심화수학Ⅰ 교과에서는 분수방정식과 무리방정식의 풀이, 삼차부등식과 사차부등식의 해결, 분수부등식과 무리부등식의 해결 등을 다룬다. 분수방정식은 분모에 변수가 포함된 방정식으로, 무연근이 생기는 경우가 있다. 심화수학Ⅰ에서는 이러한 분수방정식과 무리방정식을 풀이하고, 이를 활용하여 여러 가지 문제를 해결할 수 있도록 한다. 이를 통해 학생들은 분수...2024.10.27
-
미분 주제탐구2024.10.131. 서론 1.1. 라플라스 변환의 선정 배경 수2에 등장하는 미분과 적분의 개념을 사용하는 미분방정식을 푸는 방법의 하나인 라플라스 변환에 대해 호기심이 생겨 탐구해보았다. 라플라스 변환은 수학자 라플라스의 이름을 딴 것으로, 현재 사용되는 라플라스 변환은 라플라스로부터 시작해서 많은 학자의 기여로 완성되었다. 라플라스 변환은 미분방정식을 대수방정식으로 변환시켜 손쉽게 풀 수 있다는 장점을 가진 변환법이다. 미분과 적분, 초월함수의 개념이 모두 포함된 미분방정식은 사람이 직관적으로 인지하기 어렵고, 이를 풀어 해를 구하는 것은...2024.10.13
-
건축 속의 미적분2024.10.141. 수학 보고서 (건축 속, 설계 된 미적분) 1.1. 미적분이란? 미적분은 미분과 적분의 수학적 이론을 말하며, 17세기 중반에 라이프니츠와 뉴턴에 의해 개발되었다. 라이프니츠나 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며, 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피 등을 구하기 위해 쓰였다. 우리가 살고 있는 세상은 모든 것이 움직이고 변하는데, 미분은 이처럼 움직이는 대상을 다루고, 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상을 다룬다. 적분은 기원전부터 아이디어가 알려져 있었으...2024.10.14
-
경우의 수관련 수학 탐구보고서2024.10.201. 수학과제 탐구 교수 학습 운영 계획 1.1. 수학과제탐구의 의의와 필요성 수학과제탐구의 의의와 필요성은 다음과 같다. 수학과제탐구는 학생들이 수학의 기본 개념과 원리를 이해하고 응용할 수 있는 능력을 기르는 것을 목적으로 한다. 학생들은 수학과제탐구를 통해 실생활과 연계된 주제를 선정하고 자료 수집, 분석, 종합 등의 탐구과정을 거쳐 문제를 창의적으로 해결할 수 있다. 이는 단순한 지식의 암기를 넘어서 수학적 사고력, 문제해결력, 의사소통 능력 등 핵심역량을 기르는 데 도움이 된다. 또한 수학과제탐구는 학생 개개인의 흥...2024.10.20
-
건축 속의 미적분2024.11.071. 미적분과 건축 1.1. 미적분이란? 미적분이란 미분과 적분의 수학적 이론을 말하며, 1670년대 후반에 라이프니츠가 만들었고, 약 10년 정도 후에 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠나 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피[해석학]를 구하기 위해서 쓰였다. 우리가 살고 있는 세상은 모든 것이 움직이고 변하는데, 미분은 이처럼 움직이는 대상을 다루며, 반면 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상을 다룬다....2024.11.07
-
미분을 이용한 세특2024.12.271. 미분을 이용한 로지스틱 방정식 1.1. 개체군 증가 모델 1.1.1. 이론적 생장곡선(지수형) 개체가 이상적인 환경조건에서 생식 활동에 제약을 받지 않고 계속 번식한다면, 개체수가 기하급수적으로 증가하여 J자 모양의 이론적 생장 곡선을 나타낸다. 이러한 이론적 생장곡선은 개체군 증가 모델의 한 형태로, 수리생태학에서 주요한 개념 중 하나이다. 이론적 생장곡선은 다음과 같은 과정을 통해 유도된다. 초기 개체수를 P0라 하고, 단위 시간당 증가율을 r이라 하면, 시간 t 후의 개체수는 P(t) = P0 * e^(rt)로 나...2024.12.27