
총 36개
-
이산확률분포의 특징 비교2025.01.031. 이산확률분포 이산확률분포는 확률변수가 가질 수 있는 값이 특정 제한된 개수로 구성되는 확률분포입니다. 이산확률분포에는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 이항분포는 성공의 확률이 p인 베르누이 시행을 독립적으로 n회 반복할 때 성공의 횟수를 확률변수로 하는 분포입니다. 초기하분포는 연속적으로 어떤 시행이 일어나지만 서로 독립이 아닌 경우에 나타나는 분포로, 유한한 모집단에서 비복원추출할 때 얻게 되는 분포입니다. 포아송분포는 단위 시간 안에 어떤 사건이 몇 번 발생한 것인지를 표현하는 이산확률분포입니다. 1. 이...2025.01.03
-
확률변수와 확률분포에 대한 학습2025.01.221. 이산확률분포 이산확률분포는 확률변수에 대한 확률분포로 확률변수의 값의 확률이 어떻게 분포되었는지를 보여주는 분포입니다. 이산확률변수의 확률함수는 두 가지 조건을 만족해야 합니다. 이산확률분포에는 베르누이분포와 이항분포가 있습니다. 2. 이항분포 이항분포는 성공확률 p인 베르누이시행을 n번 반복했을 때 성공횟수 X의 분포를 나타냅니다. 이항분포는 n과 p에 의해 확률구조가 결정되며, 이 두 값이 이항분포의 모수가 됩니다. 이항분포의 특성 중 하나는 성공 확률이 동일하고 서로 독립인 이항 확률변수 합도 이항분포를 따른다는 것입니다...2025.01.22
-
경영자를 위한 데이터분석 및 통계적사고2025.01.141. 통계의 의의 및 개괄 통계는 데이터를 수집, 정리, 해석, 그리고 표현하는 수학의 한 분야로서, 우리가 사회, 경제, 과학 등 다양한 현상을 이해하고 해석하는 데 필수적인 도구이다. 통계는 개별적인 데이터 포인트에서 보이지 않는 패턴이나 경향성을 찾아내는 데 특히 중요한 역할을 한다. 통계는 기술통계와 추측통계로 나뉘며, 다양한 학문 분야와 실생활에서 활용되고 있다. 2. 기본 통계량 및 확률 기초 통계학의 기본적인 개념인 기본 통계량과 확률을 이해하는 것은 데이터 분석과 통계적 사고의 핵심이다. 기본 통계량인 평균, 중앙값,...2025.01.14
-
이산확률분포에 대한 요약2025.01.051. 확률 변수 확률 변수란 무작위로 실험을 했을 때 어떤 확률로 일어나는 각각의 결과를 수치적 값으로 표현하는 변수를 말한다. 쉽게 말해, 랜덤으로 진행되는 실험(ex. 동전을 랜덤으로 던져 그림 or 숫자가 나오는 실험)에서 일정한 확률(ex. 동전 앞이 나올 확률 1/2)을 가지고 발생하는 결과에 실수 값(ex. 앞=1, 뒤=0)을 부여하는 변수이다. 2. 확률 분포 확률 분포란 확률 변수가 가질 수 있는 모든 값에 대해 그 값이 일어날 가능성을 도수분포표나 그래프로서 표현한 것을 말한다. 확률 분포는 이산확률분포와 연속확률분...2025.01.05
-
2024년 1학기 방송통신대 기말과제물 - 행정계량분석2025.01.251. 확률변수의 개념 및 확률변수와 표본평균 간의 관계 확률변수(確率變數, random variable)란 확률실험에서 나타나는 기본결과에 특정한 수치를 부여한 것을 말한다. 확률변수는 이산형(discrete)과 연속형(continuous)으로 구분된다. 표본평균도 확률변수이며, 표본을 추출할 때마다 표본평균은 다른 값을 가질 것이다. 이는 표본평균이 추출한 확률변수값의 평균이기 때문이다. 2. 확률변수 Y의 표준편차와 새로운 확률변수 Z의 분산 확률변수 Y에 일정한 상수 k를 곱한 확률변수의 표준편차는 원래의 표준편차 σ에 상수 ...2025.01.25
-
이산확률분포와 연속확률분포의 차이점2025.01.161. 이산확률분포 이산확률분포는 확률 이론에서 이산 확률 변수가 가지게 되는 확률의 분포를 의미하며, 변수가 가지게 되는 값의 개수가 있다는 특징이 있습니다. 이산확률분포는 확률 변수가 취할 수 있는 모든 가능한 값들과 그 값들이 발생할 확률을 나타내는 함수를 정의합니다. 대표적인 이산확률분포로는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 2. 연속확률분포 연속확률분포는 연속확률변수의 가능한 값에 대한 확률을 나타내는 분포이며, 부드러운 곡선으로 표현됩니다. 연속확률분포를 특정할 때는 확률밀도함수를 사용하며, 확률을 계산하기...2025.01.16
-
확률이론에 대하여 요약하여 정리하시오2025.04.271. 확률의 공준 확률의 공준은 총 3가지로 정리할 수 있다. 공준1: 0<=P(E)<=1 (모든 확률의 값은 0이상 1이하), 공준2: P(S) = 1 (모든 확률의 합은 1), 공준3: 각 사건이 배반사건일 경우 합사건의 확률은 각각의 확률을 합한 것과 같음. 2. 확률분포 확률분포란 확률변수를 X라 하였을 때 X의 함수이다. 이 X는 특정한 값을 가지는데 그 값을 가질 확률들은 일종의 함수와 같이 특정 분포를 가지게 된다. 예를 들면 주사위를 던지는 실험에서 나올 수 있는 확률변수가 X이고, X의 확률은, P(x=1)=1/6이...2025.04.27
-
학점은행제 경영통계학 이산확률분포에 대하여 요약하여 정리하시오. 과제 A+2025.01.141. 이산확률분포 이산확률분포란 이산확률변수에 대응하는 확률분포를 뜻한다. 확률변수 x가 가지는 값이 이산집합이어서 유한집합이거나 가산적인 경우 이에 대응하는 확률분포를 이산 확률분포라고 한다. 이산확률분포에는 베르누이 분포, 이항분포, 초기하분포, 포아송분포 등이 있다. 2. 이항분포 이항분포란 어떤 시행을 하였을 때 사건이 일어날 확률이 p인 경우, n회의 독립시행에서 사건이 일어나는 횟수를 x라하면 확률분포는 P(X = r) = nCrpr(1 - p)n - r(단, r = 0, 1, 2, ···, n)이다. 이러한 분포를 이항...2025.01.14
-
경영통계학 이산확률변수와 연속확률변수의 차이 및 확률밀도함수 설명2025.04.281. 이산확률변수 이산확률변수는 모든 가능한 값이 유한하며, 각각의 값 사이의 차이가 통계적 의미를 갖고 있다. 이처럼 서로 인접한 단위 사이에서 존재할 수 있는 값들의 수는 유한이며, 확률은 각각의 특정 값들에 대응하여 할당된다. 이산확률변수는 표본 공간의 단위 사상이 취할 수 있는 모든 실수의 값을 나열할 수 있는 확률변수이다. 2. 연속확률변수 연속확률변수는 모든 가능한 값이 무한이며, 각각의 값 사이의 차이가 큰 통계적 의미는 없는 경우가 많다. 또한 서로 인접한 단위 사이에서 존재할 수 있는 값들의 수는 무한이며, 확률은 ...2025.04.28
-
보건의료통계 완벽 요약 정리본2025.01.161. 통계학의 기본개념 통계란 사람이나 사물, 사건, 사회적 현상 혹은 자연상황을 숫자로 구체화하여 나타낸 것으로 객관적인 자료를 기초로 정확하게 계산하고 판단해서 위험률을 줄이는 것이다. 통계학은 수집된 자료를 표, 도표, 숫자 등으로 요약정리하는 방법인 기술통계학과 기술통계가 기초로 한 추측통계학으로 나뉜다. 추측통계학은 모집단으로 얻은 정보를 바탕으로 모집단의 특성에 대해 추론하는 절차를 다룬 분야이며 추정과 가설검정으로 나눌 수 있다. 2. 보건의료통계 보건의료통계 분야에서는 국가나 사회집단의 보건과 관련된 분야의 수준이나 ...2025.01.16