
총 432개
-
전기회로설계실습 실습12 예비보고서2025.01.201. 저항의 고주파 특성 측정 저항, 커패시터, 인덕터의 고주파 특성을 측정하는 회로를 설계하고 실험을 통하여 등가회로를 이해하며 이들 소자들이 넓은 주파수영역에서 어떻게 동작하는지 실험적으로 이해한다. 위 3개의 회로에 각각 사인파를 입력하고, 주파수를 증가시키며 저항의 값을 확인한다. 그러면 3개의 회로 모두 저항의 값이 감소하는 모습으로 돌아서는 지점이 있다. 커패시터의 경우 저항의 값이 감소하는 구간에서 인덕터와 같이 행동하며, 반대로 인덕터의 경우 저항의 값이 감소하는 구간에서 커패시터와 같이 행동한다. 이것이 고주파 특성...2025.01.20
-
전기회로설계실습 실습9 예비보고서2025.01.201. LPF 설계 C=10nF인 커패시터와 R을 직렬 연결하여 cutoff frequency가 15.92kHz인 LPF를 설계하였다. 회로도를 그리고 R의 크기를 구하였다. 또한 LPF의 전달함수(H)의 크기와 위상을 0~100kHz까지 linear(H)-log(주파수) 그래프로 그렸다. 2. LPF 실험 LPF에 주파수가 10kHz이고 크기가 1V인 정현파를 인가하였다. 입력파형과 출력파형을 하나의 그래프에 그리고 출력의 크기와 입력에 대한 위상(각도와 시간)을 구하였다. 3. HPF 설계 L=10mH인 인덕터와 R을 직렬 연결하...2025.01.20
-
공정 제어 보고서 Y결선,델타결선,유도전동기2025.05.091. Y결선 Y결선은 각 코일의 한 끝 U2, V2, W2를 한데 묶어 이를 중성점(또는 공통점)으로 하고, 나머지 한 끝 U1, V1, W1로부터 각각 1개씩의 선을 끌어내는 방식입니다. 상전압(UP)과 선간전압(UL) 사이의 관계는 UL = √3 * UP입니다. Y결선의 장점은 중성점 접지가 가능하고 고전압 결선에 적합하며 순환전류가 흐르지 않습니다. 단점은 중성점 접지 시 제3고조파가 대지로 확산되어 통신에 장애를 줄 수 있고 고조파 전류의 통로가 없어 기전력 파형이 왜형될 수 있습니다. 2. 델타결선 델타(Δ)결선은 각 코일...2025.05.09
-
전기회로설계실습 예비보고서82025.05.151. RL 회로의 과도응답(Transient Response) 이 실습의 목적은 주어진 시정수를 갖는 RL 회로를 설계하고 이를 측정하는 방법을 설계하는 것입니다. 실험에 필요한 기본 장비와 부품이 제시되어 있으며, 3.0에서 time constant가 10 μs인 RL 직렬회로를 설계하는 방법이 설명되어 있습니다. 3.1에서는 회로의 저항 값을 계산하고, 사각파 주파수를 결정하며, 저항과 인덕터의 예상 전압 파형을 그래프로 제시하고 있습니다. 3.2에서는 오실로스코프 설정에 대해 설명하고 있으며, 3.3과 3.4에서는 저항 전압 ...2025.05.15
-
Wheatstone Bridge를 이용한 미지저항 측정2025.01.141. Wheatstone Bridge Wheatstone Bridge는 미지의 저항을 측정하는 데 사용되는 전기 회로 장치입니다. 이 실험에서는 Wheatstone Bridge를 사용하여 다양한 저항값을 가진 미지저항을 측정하고 분석하였습니다. 실험 과정에서 기지저항과 미지저항의 값을 멀티미터로 측정하고, Wheatstone Bridge의 저항선 길이를 이용하여 미지저항 값을 계산하였습니다. 오차 분석을 통해 버니어 캘리퍼스 사용의 어려움과 멀티미터 저항값 차이에 따른 오차 발생 원인을 확인하였습니다. 1. Wheatstone Br...2025.01.14
-
수동소자 판독 및 옴의 법칙2025.05.161. 수동소자 수동소자에는 저항, 인덕터, 커패시터 등이 있으며, 이들은 전기회로에서 전압/전류 공급전원과 함께 구성됩니다. 저항은 물질의 고유 비저항과 길이에 비례하고 단면적에 반비례하며, 다양한 종류의 저항이 있습니다. 저항 판독 시 컬러코드를 사용하며, 오차율을 계산할 수 있습니다. 2. 옴의 법칙 옴의 법칙은 전압, 전류, 저항 간의 관계를 표현하는 것으로, 전류는 전압에 비례하고 저항에 반비례합니다. 실험을 통해 옴의 법칙을 확인할 수 있으며, 이론값과 측정값 간의 오차를 계산할 수 있습니다. 또한 멀티심 시뮬레이션을 활용...2025.05.16
-
회로이론및실험1 10장 커패시터 A+ 결과보고서2025.01.131. 커패시터의 특성 실험을 통해 커패시터가 직류 또는 교류 회로에서 전하를 저장하는 역할을 한다는 것을 알 수 있었다. 커패시턴스 또는 전압이 증가하면 커패시터를 이동하는 전하량도 증가한다는 것을 확인했다. 커패시터로 이동하는 전하의 양은 커패시터에 가해진 전압과 커패시턴스 값에 정비례한다. 2. 커패시터의 직렬 연결 커패시터를 직렬회로로 연결했을 때는 회로 내의 모든 소자에 같은 크기의 전류가 흐르므로 한 전압원에 연결한 세 개의 커패시터에 충전된 전하량은 서로 같다. 3. 커패시터의 병렬 연결 커패시터를 병렬회로로 연결했을 때...2025.01.13
-
전기회로실험및설계 6주차 예비보고서 - DC 입력에 대한 RC 및 RL 회로의 특성2025.01.231. RC 회로의 특성 RC 회로의 시간 상수는 RC 값으로 계산할 수 있으며, 이를 통해 RC 회로의 과도 응답 특성을 분석할 수 있습니다. 예를 들어, RC 회로의 시간 상수는 4.7 x 10^-5초이며, 이를 통해 RC 회로의 과도 응답 특성을 파악할 수 있습니다. 2. RL 회로의 특성 RL 회로의 시간 상수는 L/R 값으로 계산할 수 있으며, 이를 통해 RL 회로의 과도 응답 특성을 분석할 수 있습니다. 예를 들어, RL 회로의 시간 상수는 0.001초이며, 이를 통해 RL 회로의 과도 응답 특성을 파악할 수 있습니다. 3...2025.01.23
-
전기회로설계실습 6. 계측장비 및 교류전원의 접지상태의 측정방법설계2025.01.211. DMM의 기능 및 입력저항 측정 DMM의 기능스위치를 저항측정모드로 맞추고 단자 사이의 저항을 측정한다. DMM의 입력저항은 10MΩ이다. 2. Function Generator의 출력저항 및 출력파형 특성 Function Generator의 출력저항은 50Ω이며, 출력파형은 정현파이다. DMM으로 측정한 실효값은 이다. 3. 오실로스코프의 입력저항 및 측정 방법 오실로스코프의 입력저항은 일반적으로 1MΩ이며, 일부 고가의 오실로스코프에서는 50Ω의 저항을 가진다. 오실로스코프로 Function Generator의 출력파형을 ...2025.01.21
-
전기회로실험1_실험 장비 사용법 및 Thevenin 등가회로 결과레포트2025.01.281. Thevenin 등가회로 실험 (DC Input) 첫번째 실험은 저항 3개와 전압원 두 개로 이루어진 복잡한 회로를 등가화시켜 계산을 간단하게 만들어주는 테브난의 정리를 이해하는 실험이었다. 회로 (1.1-b)를 통해 이론값을 구하는 과정은 다음과 같다. 전체 전류는 2V를 short시켰을 때의 전류에서 5V를 short시켰을 때의 전류를 뺀 것이다. 따라서 이고, 을 구하는 과정에서 을 , 으로 잘못 측정하여 전압과 측정한 저항 전압을 더해 의 결과 값을 기록했다. 결과적으로 회로 (1.1-a)와 회로 (1.1-b)의 ...2025.01.28