
총 3개
-
자연언어처리4공통형 7강까지 학습한 모델 알고리즘 중 하나를 적용한 논문에서 모델이 어떻게 사용되었는지 기술2025.01.261. BERT 모델 적용 논문 "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"에서 BERT 모델은 자연어 처리(NLP) 분야의 다양한 언어 이해 작업을 해결하기 위해 사용되었습니다. BERT는 문맥 이해, 단어의 다의성 해결, 사전 훈련과 미세 조정, 모델의 일반화 능력 향상 등의 문제를 다루고자 했습니다. 이를 위해 BERT는 양방향 문맥 처리, Masked Language Model, Next Sentence Prediction ...2025.01.26
-
머신 러닝 학습을 위한 데이터 증량하기2025.05.081. 데이터 증강 데이터 증강(Data Augmentation)은 현대 머신러닝과 딥러닝 분야에서 핵심 개념이 되었습니다. 데이터의 양과 질은 모델의 성능과 일반화 능력에 큰 영향을 미치지만, 현실적인 제약으로 인해 충분한 양의 고품질 데이터를 수집하기 어려운 문제를 해결하기 위해 데이터 증강이 등장하였습니다. 데이터 증강은 기존의 데이터를 변형하여 새로운 데이터를 생성하는 과정으로, 모델의 학습과 예측 능력을 향상시킬 수 있습니다. 2. 데이터 증강 기법 다양한 데이터 증강 기법이 개발되어 있으며, 이를 통해 다양한 유형의 데이터...2025.05.08
-
머신러닝에서의 과적합 문제2025.05.101. 과적합(Overfitting) 과적합은 머신러닝에서 중요한 문제 중 하나입니다. 머신러닝 모델이 훈련 데이터에 너무 특화되어 있어 새로운 입력 데이터에 대한 예측 능력이 저하되는 현상을 말합니다. 이는 모델의 성능과 일반화(generalization) 능력을 감소시키며, 실제 응용에서 신뢰할 수 없는 결과를 초래할 수 있습니다. 2. 과적합의 원인 과적합은 데이터의 특성을 완벽하게 기억하는 것에서 비롯됩니다. 모델은 훈련 데이터에 맞추기 위해 복잡한 패턴과 노이즈까지도 학습할 수 있습니다. 일반적으로 데이터의 양이 적은 경우,...2025.05.10