산술평균, 분산, 표준편차의 개념 및 의의, 특징 및 장단점, 산출방법
2025.01.25
1. 산술평균
산술평균은 데이터 집합의 중심 경향성을 나타내는 대표값으로 활용된다. 이는 주어진 데이터 집합의 모든 값들을 더한 후 데이터의 개수로 나누어 계산된다. 이 값은 데이터의 분포와 집중되어 있는 위치를 파악하는 데에 유용하다. 그러나 산술평균은 이상값의 존재로 인해 왜곡될 수 있으며, 특히 데이터가 정규분포를 따르지 않을 때 문제가 될 수 있다.
2. 분산
분산은 데이터의 흩어진 정도를 나타내는 측도로, 각 데이터 값과 평균의 차이를 제곱하여 모두 합한 후 데이터의 개수로 나눈 값이다. 이는 주어진 데이터가 얼마나 평균 ...