총 30개
-
이산화탄소의 분자량 측정 실험2025.01.111. 이산화탄소의 분자량 이 실험에서는 드라이 아이스를 활용하여 이산화탄소 기체의 부피와 질량을 측정하고, 이를 통해 이산화탄소의 분자량을 결정하는 것이 목적입니다. 실험에서는 이상 기체 방정식과 아보가드로의 원리 등을 이해하고, 이산화탄소의 상태 변화도 관찰하게 됩니다. 2. 이상 기체 방정식 이상 기체 방정식은 기체의 압력, 부피, 몰수, 온도 사이의 관계를 나타내는 식입니다. 이 실험에서는 이 방정식을 이용하여 이산화탄소의 분자량을 계산하게 됩니다. 3. 아보가드로의 원리 아보가드로의 원리에 따르면 온도와 압력이 같은 조건에서...2025.01.11
-
화학실험_이산화탄소의 분자량_결과보고서2025.01.111. 이산화탄소의 분자량 측정 이 실험에서는 아보가드로의 원리와 이상 기체 상태 방정식을 활용하여 이산화탄소의 분자량을 측정하였다. 50mL, 100mL, 250mL 플라스크를 사용하여 실험을 진행하였으며, 실험 결과와 실제 이산화탄소의 분자량을 비교하였다. 실험 결과에는 약 1~3g의 오차가 존재하였는데, 이는 이상 기체 가정의 한계와 실험 과정에서의 오차 등이 원인으로 분석되었다. 또한 이산화탄소의 확산에 따른 플라스크 내부 기체의 분자량 변화와 타이곤 튜브를 이용한 이산화탄소의 상태 변화 관찰 실험도 수행하였다. 2. 기체의 ...2025.01.11
-
이산화탄소 분자량 측정 실험실습 보고서2025.01.021. 이산화탄소 분자량 측정 이 실험은 이산화탄소의 분자량을 측정하는 것을 목표로 합니다. 실험에서는 플라스크에 이산화탄소를 채우고 무게와 부피를 측정하여 이상기체 방정식을 이용해 분자량을 계산합니다. 실험 과정에서 부피 측정 시 오차가 발생했지만, 전반적으로 실험 방법과 원리를 이해하고 실습할 수 있었던 유익한 경험이었습니다. 1. 이산화탄소 분자량 측정 이산화탄소 분자량 측정은 화학 분야에서 매우 중요한 연구 주제입니다. 이산화탄소는 지구 온난화의 주요 원인 물질로 알려져 있으며, 이에 대한 정확한 측정은 기후 변화 연구와 대응...2025.01.02
-
[서울대학교 A+] 화학실험 결과보고서 - 이산화탄소의 헨리상수2025.01.121. 헨리의 법칙 헨리의 법칙이 적용될 때, 온도가 일정하다면 용액 속 용질의 용해도는 용액 위에 존재하는 해당 용질의 기체상의 부분압력에 정비례한다. 이를 식으로 표현하면 C = kH * P이다. 이 때 C는 몰농도(기체의 용해도)이고, P는 기체의 부분 압력이며, kH는 헨리 상수를 뜻한다. 다만 이 법칙이 적용되기 위해서는 기체의 압력이 크지 않아야 하고, 기체의 용해도 역시 작아야 한다. 또한 극성 분자의 경우 헨리의 법칙을 완벽하게 따르지 않을 수 있다. 2. 표준물질 1차표준물질은 순도가 높고, 그 물질을 넣은 용액을 제...2025.01.12
-
기체의 몰질량 예비보고서2025.01.141. 몰 몰은 원자, 분자, 이온 등과 같이 매우 작은 입자의 양을 나타내는 묶음 단위로 정의된다. 국제단위계의 기본 단위이며 기호는 mol이다. 원소 1몰은 6.022 ×1023 개의 원자를 포함하며, 이 값을 아보가드로수라고 한다. 2. 몰 질량 몰 질량은 물질 1몰의 질량이다. SI 단위는 kg/mol 이지만 일반적으로는 g/mol을 쓴다. 1몰의 질량은 화학식량 뒤에 g을 붙인 값과 같다. 화학식량 뒤에 g/mol을 붙인 값과 같다. 원자는 원자량, 분자는 분자량, 이온 결합 물질은 화학식량 뒤에 붙이면 된다. 3. 부력 부...2025.01.14
-
[서울대학교 화학실험] 이산화탄소의 분자량 결과보고서 (50/50)2025.01.141. 이산화탄소의 분자량 측정 실험을 통해 이산화탄소의 부피와 질량을 측정하고, 아보가드로의 법칙과 이상기체방정식을 활용하여 이산화탄소의 분자량을 직접 계산해볼 수 있었다. 실험 결과, 이산화탄소의 분자량은 아보가드로 법칙을 통해 계산했을 때 47g/mol, 이상기체방정식을 통해 계산했을 때 48g/mol로, 실제 값인 44.009g/mol보다 약간 크게 계산되었다. 이는 온도 측정의 오차, 이상기체 가정의 한계, 유효숫자 고려 등의 요인으로 인한 것으로 분석된다. 2. 액체 이산화탄소의 관찰 실험에서 액체 이산화탄소를 관찰하지 못...2025.01.14
-
이산화탄소의 분자량 측정 및 액체 이산화탄소 관찰2025.01.021. 이산화탄소의 분자량 측정 이산화탄소의 분자량을 두 가지 방법으로 측정했다. 첫째, 공기의 밀도를 이용해 이산화탄소의 밀도를 계산하고 이를 통해 분자량을 도출했다. 둘째, 이상기체 상태방정식을 이용해 분자량을 계산했다. 두 방법 모두 유사한 결과를 보였다. 실험 과정에서 이산화탄소가 점차 확산되어 공기의 분자량에 수렴하는 경향을 관찰했다. 오차 요인으로는 이상기체 가정의 한계, 수증기 응결, 공기 중 이산화탄소 및 수증기 존재 등이 있다. 2. 액체 이산화탄소 관찰 타이곤 튜브 내부에서 드라이아이스가 승화하며 압력이 높아짐에 따...2025.01.02
-
이산화탄소의 헨리상수 측정 실험 결과 보고서2025.01.021. 이산화탄소의 헨리상수 측정 이 실험에서는 이산화탄소의 헨리상수를 측정하였습니다. 실험 결과, 교반 시간에 따른 탄산수의 농도 변화와 헨리상수 값을 확인할 수 있었습니다. 1분 교반한 바이알이 가장 이상적인 헨리상수와 가장 적은 오차를 보였는데, 이는 교반하지 않았을 때의 탄산수가 불포화되었기 때문으로 보입니다. 교반을 통해 불균형한 농도로 존재하던 탄산수의 분포가 상대적으로 균등해지며 농도가 높아졌기 때문입니다. 또한 교반으로 인한 표면적 증가 효과도 있었던 것으로 보입니다. 오차 원인으로는 적정 시간에 따른 평형 반응 변화,...2025.01.02
-
유해가스 실험 (건축환경실험 레포트)2025.01.021. 실내 공기 오염 실내 공기 오염의 주요 원인은 건물 주변의 대기오염과 실내에서 발생하는 오염물질입니다. 대기오염은 자동차 매연, 난방용 연소가스 등에서 배출되는 배기가스가 주원인이 되며, 실내 오염물질에는 CO2, 수증기, 체취, 담배연기, 분진, 연소가스, 건축자재 등이 있습니다. 이산화탄소와 일산화탄소는 실내 공기 오염의 주요 지표로 사용되며, 농도에 따라 인체에 미치는 영향이 다릅니다. 2. 이산화탄소 농도 이산화탄소는 탄소의 완전연소로 발생하는 무해한 기체이지만, 실내 공기 오염 정도를 나타내는 지표로 사용됩니다. 실내...2025.01.02
-
기체 흡수 결과보고서2025.01.211. 기체 흡수 이번 실험은 하부에는 공기와 이산화탄소를 넣고, 상부에는 물을 넣은 후 이산화탄소 농도를 통해 시간에 따라 흡수되는 기체 흡수량을 관찰하는 실험이었습니다. 탑에서 이산화탄소는 물과 만나 일부는 흡수되고 나머지는 상부로 배출됩니다. CO2는 H2CO3로 변환되고 흡수되어 상부와 하부의 물을 NaOH를 사용해 적정하면 흡수된 CO2양을 구할 수 있습니다. 또한, 이 CO2를 사용해 NTU와 HTU를 구하며, ZT는 NTU TIMES HTU로 나타낼 수 있습니다. 2. 물질전달 실험 결과에서 온도를 보면 상부와 하부는 온...2025.01.21