
총 3개
-
시계열 데이터 분석 기법과 A/B 검증2025.01.261. 시계열 데이터 분석 기법 시계열 데이터 분석을 위한 대표적인 기법으로 이동 평균법, ARIMA 모델, 지수 평활법, 심층 신경망을 이용한 예측 등이 있다. 각 기법은 데이터의 특성에 따라 장단점이 다르며, 적절한 기법을 선택하여 활용하는 것이 중요하다. 이동 평균법은 단기 변동을 완화하고 장기 경향을 파악하는 데 유용하며, ARIMA 모델은 트렌드와 계절성을 고려한 예측에 적합하다. 지수 평활법은 최근 데이터에 가중치를 두어 변화에 민감하게 반응할 수 있고, 심층 신경망은 복잡한 패턴의 비선형 데이터 분석에 강점이 있다. 2....2025.01.26
-
시계열 자료 분석과 활용2025.05.011. 시계열 데이터 분석 시계열 데이터는 시간의 흐름에 따라 관측된 데이터로, 다양한 변수 간의 인과관계를 분석하는 데 활용됩니다. 시간 간격은 연도별, 계절별, 월별, 일별 등 다양하게 사용되며, 일반적으로 월 단위가 가장 많이 사용됩니다. 시계열 데이터의 특징은 시간의 영향을 받고 서로 독립적이지 않다는 점입니다. 따라서 새로운 분석 방법이 필요합니다. 2. 시계열 데이터의 활용 시계열 데이터는 공학의 신호 처리와 관련이 높으며, 경제학에서 널리 사용되는 방법론입니다. 계량경제학, 금융학, 거시경제학 분석에 활용됩니다. 또한 시...2025.05.01
-
시계열 데이터 분석 기법의 장단점 및 예시2025.01.261. ARIMA 모델 ARIMA 모델은 시계열 데이터의 선형적 관계를 잘 포착하여 비교적 간단한 수식으로 데이터 예측이 가능하다는 장점이 있습니다. 주식 가격 예측, 경제 지표 예측, 수요 예측 등에서 유용하게 사용될 수 있습니다. 그러나 비선형적이거나 계절적 패턴을 가진 데이터에는 적합하지 않으며, 모델의 설정 및 파라미터 최적화가 복잡할 수 있다는 단점이 있습니다. 2. 지수평활법 지수평활법은 데이터의 최신 변화에 빠르게 반응하여 짧은 기간의 예측에 특히 유리합니다. 이 방법은 비교적 간단하고 직관적이며, 데이터가 급격히 변동할...2025.01.26