총 3개
-
푸리에 급수를 통한 복잡한 함수 분석2025.01.151. 푸리에 급수 푸리에 급수는 프랑스 수학자 조제프 푸리에가 1822년에 열 문제를 해결하기 위해 처음 개발한 방법입니다. 이 방법은 주기성을 띠는 복잡한 신호를 다양한 주파수로 나누어 분석할 수 있게 해줍니다. 푸리에의 가설은 '같은 형태를 반복하는 주기를 가진 파동은, 아무리 복잡한 것이라도 단순한 파동이 잔뜩 결합해 이루어진다'였으며, 이를 체계화한 것이 푸리에 급수입니다. 주기성을 가지는 함수는 삼각함수의 합으로 표현할 수 있습니다. 2. 푸리에 변환 푸리에 변환은 푸리에 급수를 확장한 개념으로, 주기성을 가지지 않는 함수...2025.01.15
-
공업수학의 차원(次元, dimension) 도구 중 한 가지 선택 후 주제 대상의 효과적 활용2025.01.291. 좌표변환 좌표 변환은 17세기 르네 데카르트에 의해 처음으로 구체화되었으며, 이후 천문학과 물리학의 발전과 함께 극좌표계, 구면좌표계 등으로 확장되었다. 좌표 변환은 물리적 대칭성을 활용하거나 계산 효율성을 높이는 데 유용하며, 천체물리학, 유체역학, 로봇 공학, 컴퓨터 그래픽스, 데이터 분석 등 다양한 분야에서 활용되고 있다. 좌표 변환은 복잡한 문제를 단순화하고, 공간적 관계를 명확히 이해할 수 있게 하며, 계산의 효율성을 향상시키는 등 많은 장점을 가지고 있다. 2. 이론적 원리와 공식 좌표 변환은 하나의 좌표계에서 다른...2025.01.29
-
공업수학의 차원(dimension) 도구 중 극좌표의 효과적 활용2025.01.201. 극좌표 개념과 응용 극좌표는 좌표 평면에서 한 점의 위치를 나타내기 위해 각도와 반지름을 사용하는 좌표계입니다. 이는 일반적인 직교 좌표계와 달리, 중심점(원점)에서 특정 각도와 거리로 한 점을 표현합니다. 극좌표계는 특히 원형 또는 방사형 대칭을 가지는 문제에서 유용하게 적용되며, 물리학, 기계공학, 전기공학 등 다양한 공학 분야에서 활용됩니다. 2. 극좌표의 장점 분석 극좌표는 방사형 대칭성을 가진 문제에 대한 접근성을 높여주며, 특정 물리적 현상을 모델링하는 부분에 있어 직교 좌표계보다 효율적입니다. 또한 극좌표는 다양한...2025.01.20