총 4개
-
김영평생교육원 선수과목 이산수학 수학적 귀납법에 대하여 설명하고, 교재에서 배우지 않은 예를 만들고 수학적 귀납법을 이용하여 증명하여라. A+ 백분위 1002025.01.151. 수학적 귀납법의 정의 수학적 귀납법이란, '모든 자연수 n에 대하여 자연수에 관한 명제 P(n)이 성립함'을 보이는 증명 방법이다. 이 증명법은 크게 기본단계와 귀납단계로 나뉜다. 기본단계는 출발점인 n에 대하여 명제 P(1) (또는 P(0))이 성립함을 보이는 것이고, 귀납단계는 어떤 자연수 k에 대하여 P(k)가 성립한다는 가정 하에 P(k+1)도 성립함을 보이는 것이다. 2. 수학적 귀납법의 역사적 사실 수학적 귀납법은 아주 오래전부터 다루어진 증명법이다. 고대 그리스 수학자인 '유클리드 (Euclid)'가 '소수의 무한...2025.01.15
-
롤러코스터 속 미분 탐구2025.01.291. 미분 이 탐구에서는 롤러코스터 '드라켄'의 각 지점에서의 순간변화율을 분석하였습니다. 먼저 드라켄의 낙하 궤도를 그래프로 나타내고, 공학용 도구인 '지오지브라'를 활용하여 특정 지점에서의 접선의 기울기를 구했습니다. 이를 통해 롤러코스터의 구간이 변화함에 따라 속력도 실시간으로 변화한다는 것을 확인할 수 있었습니다. 이를 통해 미분이 실생활에 다양하게 적용될 수 있다는 사실을 알게 되었습니다. 2. 롤러코스터 이 탐구에서는 경주월드의 롤러코스터 '드라켄'을 대상으로 하였습니다. 드라켄은 63m에서 117km/h의 속력으로 떨어...2025.01.29
-
이산수학 ) 수학적 귀납법에 대하여 설명하고 교재에서 배우지 않은 예를 만들고 수학적 귀납법을 이용하여 증명2025.01.281. 수학적 귀납법 수학적 귀납법은 한 개의 도미노가 넘어지면 다른 도미노도 차례로 쓰러지고, K 번째 도미노가 쓰러지면 K+1번째 도미노가 쓰러지는 것과 같이 어떤 명제가 모든 자연수에 대해 참임을 증명하고자 할 때 사용한다. 수학적 귀납법은 과학뿐만 아니라 그래프이론, 정수론, 선형대수학, 해석학, 기하학, 확률론 등 수학의 대부분 분야에서 사용되었고, 컴퓨터과학과 알고리즘 발달 초점을 둔 오늘날의 인공지능 시대에는 더욱 필요한 논리이다. 2. 수학적 귀납법의 역사 유클리드는 자신의 저서 '원론'에서 처음으로 수학적 귀납법을 사...2025.01.28
-
CT와 연립방정식2025.01.121. CT (Computed Tomography) CT(컴퓨터 단층촬영)은 신체에 X선을 360도에 걸쳐 일정한 방향으로 쏘아 처음 쏜 X선 양과 통과한 X선 양의 차이를 측정하는 촬영 기술입니다. 3차원을 2차원 필름에 나타내는 일반 X선과 달리 입체의 단면을 보여주기 때문에 병의 원인을 알아내는 데 중요한 도구입니다. 신체를 통과한 X선 에너지가 내부 구조의 밀도에 따라 얼마나 줄어들었는지를 측정하는 원리로 작동합니다. 2. 연립방정식 CT의 기본 원리는 연립방정식입니다. X선의 방향을 달리해가면서 횟수를 거듭해 인체의 모든 영...2025.01.12