
총 8개
-
[실험설계] PL Spectrum을 이용한 PLQY 분석 반데르발스 힘의 원리 및 정의2025.01.241. Van der Waals force 원리 반데르발스 힘은 분자와 분자 사이에 상호작용하는 인력으로, 쌍극자 - 쌍극자, 쌍극자 - 유도 쌍극자, 유도 쌍극자 - 유도 쌍극자 간의 인력 이렇게 세 종류의 힘으로 분류된다. 이 중 인력의 세기가 가장 약한 유도 쌍극자 - 유도 쌍극자 간의 인력을 Iondon 또는 dispersion force (분산력)이라고 부른다. 분산력은 두 분자 의 극정이 무극정이라 할지라도 분자 내 전자운동에 의한 전자밀도 변화로 순간적인 쌍극자가 형성되고 이로 인해 주변의 다른 분자들도 영향을 받아 유도...2025.01.24
-
생화학 1단원 생화학의 개요 요약2025.04.301. 생물의 다양성과 공통성 지구 상에는 다양한 생물들이 존재하지만, 이들은 공통된 조상으로부터 진화하였으며 중심 원리(Central dogma)를 따르는 공통된 특징을 가지고 있다. 생물들은 다양한 경로로 에너지를 얻지만, 유사한 생체 거대분자와 대사 과정을 공유하고 있다. 2. DNA의 이중나선 구조 DNA의 이중나선 구조는 1953년 Watson과 Crick에 의해 밝혀졌으며, 두 개의 상보적인 역평행 가닥으로 이루어져 있다. Sugar-Phosphate backbone, 네 가지 염기(A, T, G, C), Hydrogen ...2025.04.30
-
고등학교 화학2 평가계획서2025.01.161. 화학 전지의 작동 원리 화학 전지의 작동 원리를 산화-환원 반응으로 설명할 수 있다. 전극 반응을 산화-환원 반응식으로 나타낼 수 있다. 2. 전기 분해의 원리 전기 분해의 원리를 산화-환원 반응으로 설명할 수 있다. 전극 반응을 산화-환원 반응식으로 나타낼 수 있다. 3. 수소 연료 전지의 활용 수소 연료 전지의 구성과 전극에서 일어나는 반응을 산화-환원 반응으로 설명할 수 있다. 수소 연료 전지가 활용되는 분야를 조사하여 설명할 수 있다. 4. 기체의 성질 기체의 온도, 압력, 부피, 몰수 사이의 관계를 설명할 수 있다. ...2025.01.16
-
액체와 고체의 밀도 측정 결과보고서2025.05.101. 에탄올 밀도 측정 에탄올의 밀도를 측정하여 오차율을 계산하였다. 오차의 주요 요인은 피펫에 남아있는 잔여 시료와 매니스커스 눈금 읽는 개인오차였다. 온도가 높아질수록 밀도가 낮아지는 이론과 일치하는 결과를 얻었다. 2. CaCl2 용액 밀도 측정 CaCl2 용액의 농도별 밀도를 측정하고, 미지농도 시료의 밀도를 이용하여 농도를 계산하였다. 농도와 밀도의 관계를 나타내는 추세선 공식을 도출하여 활용하였다. 시료 옮기는 과정에서의 오차가 주요 요인이었다. 3. 고체 밀도 측정 유리구슬의 밀도를 측정하였다. 오차의 주요 요인은 구슬...2025.05.10
-
서울대학교, 화학실험, 만점, A+, 계산화학실습 결과보고서2025.01.291. 계산화학 분자 수준의 관찰은 컴퓨터를 통해 이루어지며, 이를 계산화학이라 한다. 본 실험에서는 Xshell과 Avogadro 프로그램을 통해 6개의 분자 CH4, C2H2, C2H4, H2O, H2S, H2Se의 bond length, angel, monomer와 dimer 형태에서 energy를 통한 분자 간 interaction, 분자의 구조 및 오비탈 구조를 관찰하였다. 이를 통해 원자 번호가 클 수록, 결합의 길이가 감소하며, 비공유 전자쌍이 공유 전자쌍보다 큰 반발력 가지고, 분자 간 수소결합이 가장 강한 것을 알 수...2025.01.29
-
서울대학교, 화학실험, 만점, A+, 계산화학실습 예비보고서2025.01.291. Hartree-Fock method Hartree-Fock method는 양자화학적 분자의 전자 구조 계산 방법으로, 슈뢰딩거 방정식을 풀기 위해 이를 전자 하나에 대한 방정식으로 변형한 후, 다른 전자가 미치는 영향을 평균적으로 근사하여 적용한다. 이를 통해 분자의 전자구조를 계산하고, 전자의 에너지와 분포를 예측할 수 있다. 2. 분자간 상호작용 분자간 힘(intermolecular force)은 분자 사이에서 발생하는 상호작용으로, 수소결합, 반데르발스 힘, 쌍극자간 상호작용, Coulomb force 등으로 존재한다. ...2025.01.29
-
[일반화학실험] 이상기체와 실제기체의 차이점 - 이상기체 방정식과 반데르발스 방정식은 왜 다른가2025.04.301. 이상기체와 실제기체의 차이점 이상기체는 질량과 에너지를 갖고 있으나 자체의 부피를 갖지 않고 분자간 상호작용이 존재하지 않는 가상적인 기체입니다. 그러나 실제기체는 부피를 가지며 분자간 상호작용이 있습니다. 이상기체의 분자는 부피가 없고 질량만 있는 질점이며, 실제기체의 분자는 일정한 공간을 차지하며 분자의 종류에 따라 각기 형태가 있는 기체입니다. 또한 이상기체는 분자간 탄성충돌 외에 다른 상호작용이 없고, 따라서 운동에너지 손실이 없지만, 실제기체의 분자들은 전자구름의 분포에 따른 상호작용을 일으킵니다. 2. 이상기체 방정...2025.04.30
-
화학개론 - 물질의 끓는점 차이 분석2025.01.281. 분자의 상호작용과 끓는점 화학개론 1. 다음 표에 보여준 물질(메탄, 에탄, 부탄)의 끓는점이 차이가 나는 이유를 설명하고 이 설명을 바탕으로 프로판의 끊는점을 예측하시오. 분자 간 상호작용은 쌍극자-쌍극자의 상호작용, 분산력, 수소결합으로 구분할 수 있다. 극성 분자에서 주요 힘으로 작용하는 쌍극자-쌍극자의 상호작용은 분자의 극성이 클수록 세지기 때문에, 결국 극성 분자는 상대적인 극성이 클수록 끓는점이 높게 나타난다. 그리고 무극성 분자의 경우, 분산력이 주요 힘으로 작용하기 때문에, 상대적으로 분자량이 큰 분자가 높은 끓...2025.01.28