총 28개
-
미적분 교수 학습 운영 계획(평가계획서)2025.01.171. 수열의 극한 수열의 수렴과 발산, 급수, 부분합, 급수의 합, 등비급수 등과 관련된 수학적 표현의 의미를 이해하고 다른 사람에게 설명할 수 있다. 적합한 공학적 도구와 수학적 모델링을 이용하여 수열의 극한에 관한 다양한 문제를 해결할 수 있다. 수열의 극한에 대한 수학적 아이디어와 개념을 탐구하고, 문제 상황을 수학적으로 분석하고 해석하여 최적의 해결 방안을 탐색할 수 있다. 2. 미분법 자연로그, 삼각함수의 덧셈정리, 매개변수, 음함수, 이계도함수, 변곡점 등과 관련된 수학적 표현의 의미를 이해하고 여러 가지 미분법과 관련된...2025.01.17
-
미적분 보고서 세특 의학2025.01.151. 미적분을 통한 효소 반응 속도 이해 이 보고서에서는 미적분을 활용하여 효소 반응 속도에 대해 탐구하였습니다. 먼저 반응 속도에 영향을 미치는 요인들을 살펴보고, 평균 반응 속도와 순간 반응 속도의 개념을 정리하였습니다. 이를 바탕으로 미카엘리스-멘텐 식을 유도하는 과정을 자세히 설명하였습니다. 또한 미카엘리스-멘텐 식의 그래프와 라인위버-버크 방정식을 통해 효소 반응 속도에 대한 이해를 높였습니다. 1. 미적분을 통한 효소 반응 속도 이해 미적분은 효소 반응 속도 이해에 매우 유용한 수학적 도구입니다. 효소 반응 속도는 시간에...2025.01.15
-
미적분, 화학 연계 발표자료 - 반감기와 미적분2025.01.211. 반감기 반감기란 어떠한 물질의 양이 초기값의 절반이 되는데 걸리는 시간을 말합니다. 화학반응 속도를 구하는 데 중요한 요소이며, 방사능 원소들의 반감기와 화학반응에서의 반감기(농도)가 있습니다. 붕괴 상수의 차이에 따라 반감기가 달라집니다. 2. 미분 방정식 1개의 입자가 단위시간당 반응할 확률이 K(붕괴상수)일 때, N개의 입자에서 단위시간당 반응할 입자수는 NK로 나타낼 수 있습니다. 이를 통해 미분방정식을 유도할 수 있으며, N에 대한 관계식을 통해 반감기를 구할 수 있습니다. 1. 반감기 반감기는 방사성 물질이나 약물 ...2025.01.21
-
미분방정식과 패러데이 법칙을 통한 미적분의 전자공학 응용2025.11.151. 미분계수와 도함수 미분계수는 함수 f(x)의 극한값으로 정의되며, 특정 x값에서의 순간 변화율과 접선의 기울기를 나타냅니다. 미분가능한 함수는 연속함수이고, 미분계수를 나열한 함수를 도함수라고 합니다. 함수가 연속이어도 도함수는 연속이 아닐 수 있습니다. 2. 정적분과 넓이 계산 부정적분 g(x)는 도함수가 f(x)인 함수입니다. 닫힌구간 [a,b]에서 연속인 함수의 정적분은 g(b)-g(a)로 계산되며, 함수와 x축 사이의 넓이는 ∫|f(x)|dx로 구합니다. 극한을 이용한 리만 합으로도 넓이를 계산할 수 있습니다. 3. 미...2025.11.15
-
[미적분 세특 보고서 추천] 3D프린터에 쓰이는 미분과 적분의 원리2025.01.281. 미분과 적분의 원리 3D 프린터에 쓰이는 미분과 적분의 원리를 탐구하였다. 3D 프린터로 출력하기 위해서는 디자인 파일을 '미분'하듯이 얇은 가로 층으로 나누는 '슬라이싱' 과정이 필요하며, 이는 미분과 유사하다. 또한 3D 프린터가 물체를 층층이 '적분'하듯이 쌓아 올리는 방식은 적분의 원리와 유사하다. 구분구적법의 원리와도 연관이 있는데, 선을 잘게 나눌수록 원래 도형의 넓이에 가까워지는 것처럼 3D 프린터에서도 층이 얇을수록 완성되는 물체의 품질이 좋아진다. 1. 미분과 적분의 원리 미분과 적분은 수학의 근간을 이루는 핵...2025.01.28
-
고등학교 미적분 평가계획서2025.01.161. 수학적 사고력 및 문제해결력 평가 학습자의 수학적 사고과정과 수학의 기본적인 개념과 원리, 법칙에 대한 이해를 평가함으로써 학생들의 논리적 사고력, 문제해결력 및 고등정신능력을 배양하고 학생 개개인의 학습목표설정 및 수준을 파악하여 자기 주도적 학습력을 제고한다. 2. 수학적 표현 및 활용 능력 평가 수학적 용어와 기호를 정확하게 사용하고 표현하는 능력과 수학적 지식과 기능을 활용하여 합리적으로 문제를 해결하는 능력을 고양한다. 3. 평가 방향 및 방침 평가는 과정을 중시하고 수학적 사고력과 종합적 문제 해결력을 요하는 문항을...2025.01.16
-
<현역의대생> 수2 과목에서 가진 오개념이 미적분 과목에 미치는 영향_탐구보고서_수학(세특)2025.01.121. 함수의 극대와 극소 고등학교 학생들이 '함수의 극대와 극소'를 학습하는 과정에서 정규수업 시간에 '상수함수의 극값'과 '불연속함수의 극값'의 학습한 정도와 극대ㆍ극소의 정의에 대하여 어떻게 이해하고 있는지 설문조사를 통하여 조사한 결과를 분석하였다. 1,2번 문항에서 'x=4에서 f(x)가 극댓값을 갖는다.'는 명제에 옳게 답한 학생이 설문에 참여한 학생 45명 중(대부분 1~3등급) 33.3%만이 옳게 대답했다. 1. 함수의 극대와 극소 함수의 극대와 극소는 수학에서 매우 중요한 개념입니다. 극대점은 함수가 가장 큰 값을 가...2025.01.12
-
미적분 보고서2025.01.151. 인공지능과 최적화 인공지능에 대한 관심이 커짐에 따라 인공지능이 어떤 방식으로 가능성을 계산하는지 궁금증을 가지고 탐구하였습니다. 특히 인공지능의 딥러닝에 사용되는 '경사하강법'과 이를 이해하기 위한 '편미분', '기울기 벡터' 등의 수학적 개념을 학습하였습니다. 이를 통해 인공지능 발전에 미적분이 큰 역할을 하였음을 알게 되었고, 미래 사회에 필요한 인재가 되기 위해서는 수학적 사고력 향상이 중요하다는 점을 깨달았습니다. 1. 인공지능과 최적화 인공지능 기술은 다양한 분야에서 최적화 문제를 해결하는 데 큰 역할을 하고 있습니...2025.01.15
-
이과생들의 수학 교과 세특 기재 예문2025.05.131. 수학 1 부등식의 영역을 통해 최대 최소를 구하는 방법을 이해하고 있으며 모든 상황을 부등식으로 표현하여 최대 최소가 될 수 있는 모든 점을 찾음. 생산 지점에 따른 생산 조건을 이해하고 조건에 따른 최적 지점 및 비용 변화를 추론할 때 수학적 근거가 다소 부족함을 채우기 위해 직관적 방법만이 아닌 수학적인 도구를 사용하여 결과를 해석하는 능력이 우수함. 2. 수학 2 수열의 귀납적 정의를 이해하고 있으며 일반항과 수열의 합의 관계를 잘 표현함. 엑셀을 다루는데 아직 미숙하여 주어진 수열을 그래프로 표현하는 데 어려움을 겪었지...2025.05.13
-
아르키메데스의 수학적 업적2025.01.201. 아르키메데스의 수학적 업적 아르키메데스는 기원전 287년 출생한 것으로 추정되며 기원전 212년 2차 포에니 전쟁 중 사망하였다. 그의 거의 모든 논문은 9세기 초와 10세기에 콘스탄티노플에서 양피지 위에 그리스어 소문자로 필사되었다. 그의 주요 업적은 다음과 같다: 1. 천칭을 이용하는 기계적물리적 방법으로 도형을 적분하는 과정을 소개한 '방법'이라는 논문을 남겼다. 그는 도형의 넓이와 부피와 같은 기하학적 성질을 알아내기 위해 천칭의 원리를 이용하였다. 2. 포물선 조각의 넓이, 구의 부피, 구의 겉넓이 등을 구하는 공...2025.01.20