총 40개
-
이산 분포의 효과적 활용법2025.01.241. 이산 분포 이산 분포는 데이터의 특성과 패턴을 이해하고 분석하는 데 중요한 도구로 활용된다. 이산 분포는 명확한 값으로 구분되는 사건이나 개수를 모델링하는 데 사용되며, 특히 사건이 발생할 횟수나 특정 카테고리로 구분되는 데이터를 다룰 때 유용하다. 이산 분포의 장점으로는 명확한 사건 수 모델링, 확률 질량 함수 사용, 베르누이 분포와 이항 분포의 활용 등이 있다. 2. 이산 분포의 효과적 활용법 이산 분포는 품질 관리, 마케팅 분석, 사건 발생 횟수 예측, 카테고리 데이터 분석, 첫 번째 성공까지의 실패 횟수 분석 등 다양한...2025.01.24
-
확률변수와 겹합확률분포, 확률분포에 대한 학습2025.01.211. 확률분포 확률분포(Probability distribution)는 확률에 대한 분포 함수로 이해할 수 있는데, 즉 어떤 사건(Event)이 일어날 확률(Probability)이 있을 경우 확률 변수가 특정한 값을 가질 확률을 나타낸 것이다. 따라서 이 확률변수의 종류에 따라 확률분포를 이산확률분포와 연속확률분포로 구분할 수 있다. 2. 이산확률분포 확률변수를 셀 수 있을 경우에는 이산확률분포를 도출하게 되고, 확률변수를 셀 수 없으며 무한하게 연속적일 경우에는 연속확률분포를 갖게 된다. 이산확률분포의 종류로는 이항분포, 포아송...2025.01.21
-
이산확률분포에 대하여 요약 정리하시오2025.01.201. 이산확률분포의 개념 이산확률분포(Discrete probability distribution)란 확률변수의 두 가지 종류 중 하나인 이산확률변수의 확률이 어떻게 분포(Distribution)되어 있는지를 나타내는 것이다. 이산확률분포는 주로 그래프의 형태로 나타내는데, 이외에도 표의 형태 또는 방정식의 형태 등으로도 나타날 수 있다. 이때 이산확률변수란 그 확률변수가 유한하거나, 또는 무한수열의 값을 가지는 바 각각의 값을 셀 수 있다. 2. 이산확률분포와 연속확률분포 이산확률분포와 대조적인 개념은 연속확률분포(Continuo...2025.01.20
-
확률변수와 겹합확률분포, 확률분포에 대한 학습2025.01.201. 이산확률분포 이산 확률 분포는 확률 변수가 유한개의 값 또는 셀 수 있는 무한개의 값만을 취하는 분포로서 정의됩니다. 이산확률분포에는 베르누이분포, 이항분포, 기하분포, 음이항분포, 포아송분포, 초기하분포, 다항분포 등 총 7가지 종류가 있습니다. 2. 연속확률분포 연속확률변수는 확률변수의 값이 연속적인 값을 취하는 확률분포입니다. 연속확률분포의 예로는 정규분포, 표준정규분포, 스튜던트 t분포, f분포, 카이제곱분포 등이 있습니다. 연속확률분포는 확률밀도함수로 표현되며, 이산확률분포와 달리 P(X=x)의 형태로 확률을 표현할 ...2025.01.20
-
이산확률분포의 특징 비교2025.01.031. 이산확률분포 이산확률분포는 확률변수가 가질 수 있는 값이 특정 제한된 개수로 구성되는 확률분포입니다. 이산확률분포에는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 이항분포는 성공의 확률이 p인 베르누이 시행을 독립적으로 n회 반복할 때 성공의 횟수를 확률변수로 하는 분포입니다. 초기하분포는 연속적으로 어떤 시행이 일어나지만 서로 독립이 아닌 경우에 나타나는 분포로, 유한한 모집단에서 비복원추출할 때 얻게 되는 분포입니다. 포아송분포는 단위 시간 안에 어떤 사건이 몇 번 발생한 것인지를 표현하는 이산확률분포입니다. 1. 이...2025.01.03
-
방통대 시뮬레이션 출수과제2025.01.241. 큐잉 시스템 시뮬레이션 이 프레젠테이션은 큐잉 시스템 시뮬레이션에 대한 내용을 다루고 있습니다. 큐잉 시스템은 고객이 도착하여 서비스를 받는 과정을 모델링한 것으로, 고객 도착 시간, 대기 시간, 서비스 시간 등의 요소를 고려합니다. 이 시뮬레이션은 C 프로그래밍 언어를 사용하여 구현되었으며, 고객 도착 확률, 서비스 시간 등의 변수를 설정하고 시뮬레이션을 수행하여 평균 대기 시간, 평균 대기열 길이 등의 결과를 도출합니다. 1. 큐잉 시스템 시뮬레이션 큐잉 시스템 시뮬레이션은 실제 시스템의 동작을 모방하여 시스템의 성능을 분...2025.01.24
-
2023년 2학년 1학기 엑셀데이터분석 출석과제 중간과제 만점2025.01.251. A & B 지역의 연강수량 분석 두 지역의 연도별 강수량 자료에 대해 꺾은선형 차트를 이용하여 전체적인 경향을 설명하였다. 전반적으로 B지역보다 A지역의 연간 강수량이 많으며, 특히 1991~1993년, 2002년 및 2005~2006년에 A지역의 강수량이 B지역보다 많았음을 확인하였다. 또한 2018년부터는 두 지역간 강수량 차이가 거의 없는 것으로 나타났다. 각 지역의 강수량에 대한 기술통계량을 구해 비교한 결과, A지역이 평균 강수량, 최소값, 중앙값, 최대값 및 총 강수량 모두 B지역보다 높은 것으로 나타나 A지역의 강...2025.01.25
-
2023년 2학기 통계로세상읽기 출석수업 중간과제 리포트 30점 만점2025.01.251. 국가통계의 이용 국가통계(공식통계)는 개인, 기업, 정부 측면에서 다음과 같이 활용될 수 있다. 개인은 일상생활에서 합리적 의사결정을 위해 활용할 수 있고, 기업은 시장동향, 소비자 행동, 인구통계학적 정보 수집을 통해 전략 수립의 기본 자료로 활용할 수 있다. 국가는 국가 현황 파악, 정책 기획/수립/결정을 위한 기초자료로 활용하며, 법률 및 규제 개선, 예산 편성 등 다양한 분야에 활용된다. 2. 통계학의 역할 통계학은 1) 자료 수집, 2) 자료 요약/설명, 3) 자료를 토대로 과학적 결론 도출의 3가지 역할을 한다. 자...2025.01.25
-
한국방송통신대학교 통계데이터과학과 엑셀데이터분석 2024년 출석과제(만점)2025.01.251. 연도별 강수량 분석 A지역과 B지역의 1990년부터 2020년까지의 연강수량 자료를 엑셀과 KESS로 분석하여 두 지역의 연도별 강수량 추세 변화, 기술통계량 비교, 줄기-잎 그림과 상자그림 비교 등을 통해 두 지역의 강수량을 비교하였다. 분석 결과, A지역의 평균 및 총 강수량이 B지역보다 많았지만 연도별 편차가 컸다. 2. 이항분포와 포아송분포 자유투 성공률이 80%인 농구선수의 20번 자유투 성공 횟수와 4지선다형 문제 10문항에 대한 정답 수를 확률변수로 정의하고, 이항분포와 포아송분포를 이용하여 각각의 확률을 계산하였...2025.01.25
-
30점 만점 방통대 통계로세상읽기 2023-2학기2025.01.261. 국가통계의 개인, 기업, 정부 측면에서의 활용 개인 측면에서는 합리적인 의사결정을 위한 근거 자료로 활용할 수 있고, 기업 측면에서는 시장 분석과 전략 수립을 위한 근거 자료로 활용할 수 있으며, 정부 측면에서는 정책 기획 및 수립, 효과 평가 등에 활용할 수 있다. 2. 통계학의 세 가지 역할 통계학의 세 가지 역할은 1) 자료의 그래프에 의한 정리 및 설명, 2) 자료의 수집, 3) 자료로부터 결론 도출이다. 3. 캠핑카 판매량의 확률분포와 기대 판매수 캠핑카 판매량의 확률분포가 주어졌을 때, 기대 판매수 E(X)는 1.4...2025.01.26