
총 60개
-
방통대 시뮬레이션 출수과제2025.01.241. 큐잉 시스템 시뮬레이션 이 프레젠테이션은 큐잉 시스템 시뮬레이션에 대한 내용을 다루고 있습니다. 큐잉 시스템은 고객이 도착하여 서비스를 받는 과정을 모델링한 것으로, 고객 도착 시간, 대기 시간, 서비스 시간 등의 요소를 고려합니다. 이 시뮬레이션은 C 프로그래밍 언어를 사용하여 구현되었으며, 고객 도착 확률, 서비스 시간 등의 변수를 설정하고 시뮬레이션을 수행하여 평균 대기 시간, 평균 대기열 길이 등의 결과를 도출합니다. 1. 큐잉 시스템 시뮬레이션 큐잉 시스템 시뮬레이션은 실제 시스템의 동작을 모방하여 시스템의 성능을 분...2025.01.24
-
학점은행제 경영통계학 이산확률분포에 대하여 요약하여 정리하시오. 과제 A+2025.01.141. 이산확률분포 이산확률분포란 이산확률변수에 대응하는 확률분포를 뜻한다. 확률변수 x가 가지는 값이 이산집합이어서 유한집합이거나 가산적인 경우 이에 대응하는 확률분포를 이산 확률분포라고 한다. 이산확률분포에는 베르누이 분포, 이항분포, 초기하분포, 포아송분포 등이 있다. 2. 이항분포 이항분포란 어떤 시행을 하였을 때 사건이 일어날 확률이 p인 경우, n회의 독립시행에서 사건이 일어나는 횟수를 x라하면 확률분포는 P(X = r) = nCrpr(1 - p)n - r(단, r = 0, 1, 2, ···, n)이다. 이러한 분포를 이항...2025.01.14
-
이산확률분포와 연속확률분포의 정의와 차이점2025.01.111. 이산확률분포의 정의와 특징 이산확률분포는 이산형 변수를 다루는 확률분포로, 이산확률변수의 값이 특정한 확률로 발생하는 현상을 모델링하는 데 사용된다. 이산확률분포의 확률질량함수는 확률변수가 특정한 값일 때 그 확률을 나타내며, 누적분포함수는 확률변수가 특정한 값보다 작거나 같은 경우의 확률을 누적해서 나타낸다. 이산확률분포의 예시로는 이항분포, 포아송분포, 기하분포 등이 있다. 2. 연속확률분포의 정의와 특징 연속확률분포는 이산확률분포와는 달리 연속적인 확률 변수에서 발생하는 확률을 나타내는데 사용된다. 이를 위해 확률밀도함수...2025.01.11
-
국가통계(공식통계)의 이용과 통계학의 역할2025.01.111. 국가통계의 이용 국가통계는 국가에서 일반 기관에서 진행하기 어려운 다양한 부문의 데이터를 수집, 분석하여 만든 통계로, 개인, 기업, 정부 등 다양한 주체에서 활용할 수 있다. 개인은 자산 관리, 소비 예산 계획, 취업 결정 등에 활용할 수 있고, 기업은 소비자 분석, 가격 정책 수립, 경영 전략 수립 등에 활용할 수 있다. 정부는 정책 개발, 사회 복지 정책 수립, 사고 예방 등에 활용할 수 있다. 2. 통계학의 역할 통계학은 데이터를 수집하고 분석하여 유용한 결과를 도출하는 학문으로, 다양한 분야에서 문제 해결과 결정을 돕...2025.01.11
-
이산확률분포에 대한 요약2025.01.051. 확률 변수 확률 변수란 무작위로 실험을 했을 때 어떤 확률로 일어나는 각각의 결과를 수치적 값으로 표현하는 변수를 말한다. 쉽게 말해, 랜덤으로 진행되는 실험(ex. 동전을 랜덤으로 던져 그림 or 숫자가 나오는 실험)에서 일정한 확률(ex. 동전 앞이 나올 확률 1/2)을 가지고 발생하는 결과에 실수 값(ex. 앞=1, 뒤=0)을 부여하는 변수이다. 2. 확률 분포 확률 분포란 확률 변수가 가질 수 있는 모든 값에 대해 그 값이 일어날 가능성을 도수분포표나 그래프로서 표현한 것을 말한다. 확률 분포는 이산확률분포와 연속확률분...2025.01.05
-
고등학교 확률과 통계 교수학습계획 및 평가계획서 예시2025.01.151. 경우의 수 순열과 조합에 대한 개념을 이해하고 다양한 문제를 해결할 수 있다. 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있다. 2. 확률 통계적 확률과 수학적 확률의 차이를 이해하고 확률의 기본 성질을 이용해 확률을 구할 수 있다. 확률의 덧셈정리와 여사건의 확률을 이해하고 활용할 수 있다. 조건부확률의 의미를 이해하고 구할 수 있으며, 사건의 독립과 종속을 이해하고 확률의 곱셈정리를 활용할 수 있다. 3. 통계 확률변수와 확률분포의 뜻을 알고 이산확률변수의 기댓값과 표준편차를 구할 수 있다. 이항분포의 뜻을 알고 ...2025.01.15
-
이산확률분포와 연속확률분포의 차이점2025.01.161. 이산확률분포 이산확률분포는 확률 이론에서 이산 확률 변수가 가지게 되는 확률의 분포를 의미하며, 변수가 가지게 되는 값의 개수가 있다는 특징이 있습니다. 이산확률분포는 확률 변수가 취할 수 있는 모든 가능한 값들과 그 값들이 발생할 확률을 나타내는 함수를 정의합니다. 대표적인 이산확률분포로는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 2. 연속확률분포 연속확률분포는 연속확률변수의 가능한 값에 대한 확률을 나타내는 분포이며, 부드러운 곡선으로 표현됩니다. 연속확률분포를 특정할 때는 확률밀도함수를 사용하며, 확률을 계산하기...2025.01.16
-
경영자를 위한 데이터분석 및 통계적사고2025.01.141. 통계의 의의 및 개괄 통계는 데이터를 수집, 정리, 해석, 그리고 표현하는 수학의 한 분야로서, 우리가 사회, 경제, 과학 등 다양한 현상을 이해하고 해석하는 데 필수적인 도구이다. 통계는 개별적인 데이터 포인트에서 보이지 않는 패턴이나 경향성을 찾아내는 데 특히 중요한 역할을 한다. 통계는 기술통계와 추측통계로 나뉘며, 다양한 학문 분야와 실생활에서 활용되고 있다. 2. 기본 통계량 및 확률 기초 통계학의 기본적인 개념인 기본 통계량과 확률을 이해하는 것은 데이터 분석과 통계적 사고의 핵심이다. 기본 통계량인 평균, 중앙값,...2025.01.14
-
이산 분포의 효과적 활용법2025.01.241. 이산 분포 이산 분포는 데이터의 특성과 패턴을 이해하고 분석하는 데 중요한 도구로 활용된다. 이산 분포는 명확한 값으로 구분되는 사건이나 개수를 모델링하는 데 사용되며, 특히 사건이 발생할 횟수나 특정 카테고리로 구분되는 데이터를 다룰 때 유용하다. 이산 분포의 장점으로는 명확한 사건 수 모델링, 확률 질량 함수 사용, 베르누이 분포와 이항 분포의 활용 등이 있다. 2. 이산 분포의 효과적 활용법 이산 분포는 품질 관리, 마케팅 분석, 사건 발생 횟수 예측, 카테고리 데이터 분석, 첫 번째 성공까지의 실패 횟수 분석 등 다양한...2025.01.24
-
푸아송 분포 유도 및 특징2025.01.141. 푸아송 분포 푸아송 분포는 거의 일어나지 않는 사건에 대한 분포로 적절합니다. n = 1000000, p = 0.00001 인 경우 이항분포로 계산하기 어려워 푸아송 분포를 사용할 수 있습니다. 푸아송 분포는 수많은 사건 중 특정한 사건이 발생할 확률이 매우 적은 경우에 사용되며, 예시로 단위 길이당 DNA 가닥의 돌연변이 수, 특정 지역에서 일어나는 교통사고 건수 등이 있습니다. 2. 푸아송 분포의 유도 푸아송 분포는 특정 지역에서 하루에 일어나는 교통사고의 평균 횟수 λ = 5일 때, 교통사고가 하루에 7번 일어날 확률을 ...2025.01.14