
총 16개
-
고등미적분학 빈출 Theorem 정리본2025.01.041. 미적분학 정리 이 자료는 고등학교 미적분학에서 자주 출제되는 주요 정리들을 정리한 것입니다. 여기에는 도함수 정리, 적분 정리, 극한 정리 등이 포함되어 있습니다. 이러한 정리들은 미적분학 문제 풀이에 필수적이므로, 이 자료를 통해 중요한 정리들을 체계적으로 정리할 수 있습니다. 1. 미적분학 정리 미적분학은 수학의 핵심 분야 중 하나로, 다양한 실생활 문제를 해결하는 데 필수적인 도구입니다. 미적분학의 주요 정리들은 함수의 성질을 이해하고 분석하는 데 도움을 줍니다. 예를 들어 미분 정리는 함수의 변화율을 계산할 수 있게 해...2025.01.04
-
고려대학교 신호와시스템 A+ ch3 문제풀이(과제)2025.05.101. Discrete Time Signal 이 문제에서는 Discrete Time Signal을 Fourier Series로 나타내는 방법을 다루고 있습니다. 먼저 common period N과 기본 각주파수 wo를 찾고, x[n]을 exponential 형태로 바꿔 각각의 k에 대한 계수를 구했습니다. Discrete time signal은 continuous time signal과 달리 k가 유한하다는 특징이 있습니다. 2. Fourier Transform 이 문제를 통해 Fourier Transform을 이해할 수 있었습니다....2025.05.10
-
F=ma에서 E=mc^2 을 유도하는 방법2025.05.161. F=ma에서 E=mc^2 유도 수식 F=ma에서 수식 E=mc^2을 유도하는 과정을 설명합니다. 미치환 적분 공식, 치환 적분 공식, 부분적분 공식 등 관련 수학 개념을 활용하여 단계별로 유도 과정을 상세히 기술하고 있습니다. 1. F=ma에서 E=mc^2 유도 F=ma 공식은 뉴턴의 운동 제2법칙을 나타내는 것으로, 질량 m에 가속도 a를 곱하면 힘 F가 된다는 것을 의미합니다. 이 공식은 고전 역학의 기본 원리 중 하나입니다. 한편 E=mc^2 공식은 아인슈타인의 특수 상대성 이론에서 유도된 것으로, 물질의 에너지 E가...2025.05.16
-
제어공학 ) 라플라스 변환 성질 5가지 이상 서술 설명2025.01.241. 라플라스 변환의 선형성 라플라스 변환은 선형 연산자이므로, 두 함수의 선형 결합에 대한 라플라스 변환은 각 함수의 라플라스 변환의 선형 결합과 같다. 이 성질은 시스템의 입력이 여러 신호의 결합으로 이루어질 때, 각 신호에 대한 라플라스 변환을 개별적으로 수행한 후, 그 결과를 결합하여 전체 시스템의 응답을 구하는 데 유용하다. 2. 시간 영역에서의 이동 라플라스 변환은 시간 이동 성질을 갖고 있다. 이는 시간 영역에서의 신호가 t0만큼 지연되었을 때, 주파수 영역에서는 그 신호의 라플라스 변환에 e^{-st0} 가 곱해지는 ...2025.01.24
-
제어공학1 ) 라플라스 변환의 성질을 5가지 이상 서술하고 설명2025.01.241. 라플라스 변환의 선형성 성질 라플라스 변환의 선형성 성질은 두 함수의 선형 결합에 대한 라플라스 변환이 각 함수의 라플라스 변환의 선형 결합과 동일하다는 것을 의미합니다. 이 성질은 복잡한 시스템에서 여러 입력 신호가 동시에 작용할 때, 각각의 입력 신호에 대한 라플라스 변환을 구한 후 이를 결합함으로써 전체 시스템의 라플라스 변환을 쉽게 구할 수 있게 해줍니다. 이는 특히 시스템의 응답 분석이나 합성 과정에서 매우 유용합니다. 2. 라플라스 변환의 시간 이동 성질 시간 이동 성질은 함수가 시간 t에서 이동된 경우 그 라플라스...2025.01.24
-
수학2 평가계획서(평가기준안)2025.05.021. 함수의 극한과 연속 함수의 극한과 연속에 대한 수학적 개념과 성질을 이해하고, 이를 활용하여 다양한 문제를 해결할 수 있다. 극한값, 연속성, 미분가능성 등의 개념을 이해하고 이를 실생활 문제에 적용할 수 있다. 2. 미분 미분계수, 도함수, 접선의 방정식, 함수의 증감, 극대 극소 등 미분과 관련된 개념을 이해하고 이를 활용하여 다양한 문제를 해결할 수 있다. 미분을 통해 함수의 성질을 분석하고 최적화 문제를 해결할 수 있다. 3. 적분 부정적분과 정적분의 개념을 이해하고, 이를 활용하여 도형의 넓이와 부피, 속도와 거리 등...2025.05.02
-
롤러코스터와 클로소이드 곡선의 연관성2025.01.281. 롤러코스터의 원리 롤러코스터는 급커브, 가파른 경사, 급격한 하강을 하도록 설계된 레일 위를 열차로 달리는 놀이기구의 일종이다. 급상승 또는 원운동 등을 하기 때문에 롤러코스터를 타면 몸이 붕 뜨고, 놀라는 느낌이 든다. 특히 루프 구간에서 체감 중력가속도의 변화로 인해 몸이 눌렸다가 붕뜨는 느낌이 든다. 2. 클로소이드 곡선 클로소이드는 프랑스의 물리학자 프레넬이 고안한 완화곡선의 한 종류로, 곡선의 길이가 증가함에 따라 그에 비례하여 선형적으로 곡률이 증가하는 곡선이다. 클로소이드 곡선은 곡률이 원형에 비해 0에서부터 천천...2025.01.28
-
스마트폰의 자이로스코프와 적분의 원리2025.01.211. 자이로스코프 자이로스코프는 각운동량 원리를 이용한 기계로, 바퀴의 축을 삼중의 고리에 연결해 어느 방향이든 회전할 수 있도록 만든 장치입니다. 이를 통해 방향을 알아내고 유지하는 데 사용됩니다. 자이로스코프는 회전축이 일정하게 유지되는 특성을 이용하여 우주 공간 등 나침반을 사용할 수 없는 상황에서 방향을 알아내거나, 초소형 전자부품으로도 생산되어 태블릿, 스마트폰 등 전자기기에 널리 사용됩니다. 2. 적분의 원리 자이로스코프는 가속도 센서로 측정할 수 없는 회전 운동 요소인 각도 정보를 구할 수 있는 자이로코프 센서와 직선운...2025.01.21
-
확률과 통계 - 뷔퐁의 바늘실험2025.01.161. 뷔퐁의 바늘 실험 프랑스의 수학자 뷔퐁 백작(Georges Louis Leclerc, Comte de Buffon)은 1733년 경에 원주율의 값을 계산하기 위하여 평행선이 그려져 있는 탁자에 바늘을 던지는 실험을 제시하였는데, 이 실험을 뷔퐁의 바늘이라고 합니다. 뷔퐁의 뜨개바늘 문제를 실험적으로 검사함으로써 확률의 개념을 이해하고 실험값을 처리하는 기본 기술을 익히고자 하였습니다. 2. 확률오차 확률오차는 측정값을 얻을때 추정되는 오차의 크기를 나타낸다. 어떤 측정값이 chi = bar { x } PLUSMINUS sigm...2025.01.16
-
아르키메데스의 수학적 업적2025.01.201. 아르키메데스의 수학적 업적 아르키메데스는 기원전 287년 출생한 것으로 추정되며 기원전 212년 2차 포에니 전쟁 중 사망하였다. 그의 거의 모든 논문은 9세기 초와 10세기에 콘스탄티노플에서 양피지 위에 그리스어 소문자로 필사되었다. 그의 주요 업적은 다음과 같다: 1. 천칭을 이용하는 기계적물리적 방법으로 도형을 적분하는 과정을 소개한 '방법'이라는 논문을 남겼다. 그는 도형의 넓이와 부피와 같은 기하학적 성질을 알아내기 위해 천칭의 원리를 이용하였다. 2. 포물선 조각의 넓이, 구의 부피, 구의 겉넓이 등을 구하는 공...2025.01.20