
총 15개
-
고등학교 미적분 과목별 세부능력 및 특기 사항(과세특) 예시2025.01.171. 등비수열 기하학적 대상이 일정한 비율로 작아지는 반복되는 패턴을 나타내고 있을 때, 이 패턴이 등비수열임을 파악한 후 등비급수의 성질을 이용하여 대상들의 합을 구함. 등비수열의 수렴, 발산을 판별하는 수업에 흥미를 보이고 모둠활동에 참여하여 등비수열의 수렴 발산을 추측해 봄. 등비수열의 수렴, 발산 조건을 이해한 후 간단한 형태의 등비수열의 수렴, 발산을 판정하는 데 성공함. 등비수열의 극한값 구하기 수업에서 등비수열을 포함하는 다양한 수열들의 수렴 발산을 조사하고 극한값을 구하는 활동에 적극적으로 참여함. 등비수열의 공비가 ...2025.01.17
-
수학1 교과심화연구프로그램 계획서 ) 삼각함수가 기본이 되는 푸리에 급수, 수1, 삼각함수2025.01.201. 삼각함수 삼각함수는 수학에서 주기적인 현상을 설명하는 데 필수적인 도구이다. 삼각함수의 기본은 직각삼각형과 원의 개념에서 출발한다. 여기서 주요한 함수로는 사인(sin), 코사인(cos), 탄젠트(tan) 등이 있다. 이 함수들은 직각삼각형의 변 사이의 관계를 나타내는 비율을 기반으로 정의된다. 삼각함수는 주기성을 가지고 있으며, 다양한 항등식을 만족한다. 삼각함수의 그래프는 함수의 주기성과 진폭, 주기, 위상변위 등을 시각적으로 이해하는 데 도움이 된다. 2. 푸리에 급수 푸리에 급수는 주기적인 함수나 신호를 삼각함수의 합으...2025.01.20
-
삼각함수가 기본이 되는 푸리에 급수2025.01.201. 삼각함수의 기본 개념 삼각함수는 직각삼각형과 단위원의 개념에서 출발합니다. 주요 함수는 사인, 코사인, 탄젠트이며, 이들의 정의와 주요 성질을 이해할 수 있습니다. 단위원을 통해 각도의 사인과 코사인 값을 직관적으로 이해할 수 있으며, 삼각함수는 주기성을 가지고 여러 항등식을 만족합니다. 2. 푸리에 급수의 개념 푸리에 급수는 주기적인 함수를 사인과 코사인의 합으로 표현할 수 있습니다. 푸리에가 열의 전달 문제를 연구하면서 이를 도입했으며, 주기적인 함수는 사인과 코사인의 합으로 유일하게 표현 가능하고 주기와 동일한 주기, 원...2025.01.20
-
삼각함수를 이용한 혈흔 패턴분석 수사법(A+리포트)2025.04.281. 혈흔 패턴 분석을 통한 수사법 범죄 현장에서 발견된 혈액을 분석하는 수사에서 혈흔 패턴 분석은 필수적이다. 혈흔의 모양과 흩뿌려진 형태를 관찰하면 범죄가 어떻게 일어났는지 진행되었는지 재구성하는 데 도움이 된다. 혈흔 패턴 분석을 위해서는 삼각함수 법칙, 유체역학 관련 방정식 등 수리과학적 분석이 필수적이다. 1. 혈흔 패턴 분석을 통한 수사법 혈흔 패턴 분석은 범죄 현장에서 중요한 증거 수집 방법 중 하나입니다. 혈흔 패턴 분석을 통해 범죄 현장에서 발생한 사건의 상황을 재구성하고, 용의자의 행동을 추정할 수 있습니다. 이를...2025.04.28
-
파동의 상쇄간섭을 이용해 치과의 드릴소리 노이즈캔슬링 하기2025.04.291. 파동의 상쇄간섭 파동의 상쇄간섭을 이용하여 소리를 작게 만드는 방법을 통해 치과의 드릴 소음을 줄일 수 있는 방법을 찾고자 하였다. 파동의 간섭에는 보강간섭과 상쇄간섭이 있는데, 두 파동이 서로 반대되는 위상으로 중첩될 경우 상쇄간섭이 일어나 소리가 작아지게 된다. 2. 삼각함수와 파동 파동은 주기적인 특징을 가지므로, 파동의 한 점이 1회 진동하는데 걸리는 시간(주기), 1초 동안 진동하는 횟수(진동수), 파장 등 삼각함수의 성질을 가진다. 파동 방정식의 해는 사인함수 형태로 표현된다. 3. 노이즈캔슬링 파동의 상쇄간섭을 이...2025.04.29