
총 25개
-
뉴턴의 냉각법칙과 미적분 자료2025.01.211. 뉴턴의 냉각법칙 뉴턴의 냉각법칙은 고온도 T의 물체가 저온도 T0의 유체 중에 방치되면 물체가 차츰 냉각되는데, 그 때 물체가 냉각되는 비율은 물체와 그 주위의 온도차에 비례한다는 법칙입니다. 이러한 '시간에 따라 물체가 냉각되는 비율이 주위의 온도차에 비례함을 보이는 상관관계'를 미분(음함수의 미분)을 통해서 나타낼 수 있습니다. 2. 미분 미분이란 어떤 운동이나 함수의 순간적인 움직임을 서술하는 방법입니다. 어떤 함수의 미분이란 그것의 도함수를 도출해내는 과정을 말합니다. 뉴턴의 냉각법칙에서 나타나는 온도 변화율과 온도차의...2025.01.21
-
<현역의대생> 수2 과목에서 가진 오개념이 미적분 과목에 미치는 영향_탐구보고서_수학(세특)2025.01.121. 함수의 극대와 극소 고등학교 학생들이 '함수의 극대와 극소'를 학습하는 과정에서 정규수업 시간에 '상수함수의 극값'과 '불연속함수의 극값'의 학습한 정도와 극대ㆍ극소의 정의에 대하여 어떻게 이해하고 있는지 설문조사를 통하여 조사한 결과를 분석하였다. 1,2번 문항에서 'x=4에서 f(x)가 극댓값을 갖는다.'는 명제에 옳게 답한 학생이 설문에 참여한 학생 45명 중(대부분 1~3등급) 33.3%만이 옳게 대답했다. 1. 함수의 극대와 극소 함수의 극대와 극소는 수학에서 매우 중요한 개념입니다. 극대점은 함수가 가장 큰 값을 가...2025.01.12
-
미적분, 화학 연계 발표자료 - 반감기와 미적분2025.01.211. 반감기 반감기란 어떠한 물질의 양이 초기값의 절반이 되는데 걸리는 시간을 말합니다. 화학반응 속도를 구하는 데 중요한 요소이며, 방사능 원소들의 반감기와 화학반응에서의 반감기(농도)가 있습니다. 붕괴 상수의 차이에 따라 반감기가 달라집니다. 2. 미분 방정식 1개의 입자가 단위시간당 반응할 확률이 K(붕괴상수)일 때, N개의 입자에서 단위시간당 반응할 입자수는 NK로 나타낼 수 있습니다. 이를 통해 미분방정식을 유도할 수 있으며, N에 대한 관계식을 통해 반감기를 구할 수 있습니다. 1. 반감기 반감기는 방사성 물질이나 약물 ...2025.01.21
-
미적분 보고서2025.01.151. 인공지능과 최적화 인공지능에 대한 관심이 커짐에 따라 인공지능이 어떤 방식으로 가능성을 계산하는지 궁금증을 가지고 탐구하였습니다. 특히 인공지능의 딥러닝에 사용되는 '경사하강법'과 이를 이해하기 위한 '편미분', '기울기 벡터' 등의 수학적 개념을 학습하였습니다. 이를 통해 인공지능 발전에 미적분이 큰 역할을 하였음을 알게 되었고, 미래 사회에 필요한 인재가 되기 위해서는 수학적 사고력 향상이 중요하다는 점을 깨달았습니다. 1. 인공지능과 최적화 인공지능 기술은 다양한 분야에서 최적화 문제를 해결하는 데 큰 역할을 하고 있습니...2025.01.15
-
고등학교 미적분 평가계획서2025.01.161. 수학적 사고력 및 문제해결력 평가 학습자의 수학적 사고과정과 수학의 기본적인 개념과 원리, 법칙에 대한 이해를 평가함으로써 학생들의 논리적 사고력, 문제해결력 및 고등정신능력을 배양하고 학생 개개인의 학습목표설정 및 수준을 파악하여 자기 주도적 학습력을 제고한다. 2. 수학적 표현 및 활용 능력 평가 수학적 용어와 기호를 정확하게 사용하고 표현하는 능력과 수학적 지식과 기능을 활용하여 합리적으로 문제를 해결하는 능력을 고양한다. 3. 평가 방향 및 방침 평가는 과정을 중시하고 수학적 사고력과 종합적 문제 해결력을 요하는 문항을...2025.01.16
-
미적분을 이용한 이온결합형성점의 수학적 도출2025.01.151. 보존력 작용 전 후에 역학적에너지가 보존되는 힘. 물체가 보존력을 받아서 운동하다가 다시 원래 자리로 돌아오면 역학적 에너지가 보존된다. 2. 비보존력 어떤 물체에 힘이 작용하여 물체가 두 점 사이를 이동할 때, 물체에 해준 일이 끝점과 시작점 사이의 경로에 의존하면 이때 작용하는 힘을 비 보존력이라고 한다. 3. 보존력이 한 일 보존력이 한 일 = 초기 퍼텐셜 에너지 - 나중 퍼텐셜 에너지 4. 작용하는 힘의 크기 작용하는 힘의 크기는 에너지를 미분한 값, 즉 값에 따른 그래프의 순간 기울기이다. 5. 이온결합 형성 이온결합...2025.01.15
-
데이터과학과 지원 맞춤형 세특 기재 예시2025.01.101. 세계 지리 매사 적극적인 태도와 과목에 대한 높은 이해도를 바탕으로 수업에 참여함. 자신의 관심사와 교과 내용이 결합한 도서를 직접 찾아 읽는 모습을 통해 학습에 대한 높은 열의를 관찰함. 아랍 에미리트의 기후와 지형적 특징을 활용해 로고를 제작함. 국기의 색, 상징물, 영토의 형태 등을 두루 조합하여 로고를 제작하는 모습에서 과제에 대한 열의와 문제해결 능력을 관찰함. 또한 해당 국가에 대한 꼼꼼한 조사 결과물을 통해 뛰어난 정보 처리능력을 확인함. 2. 물리학 학업 성취도가 매우 높으며 수업 내용의 맥락을 이해하는 능력도 ...2025.01.10
-
고등 수학 세특/수행 -미적분 단원에서 생활 속 응용 사례 발표하기2024.12.311. 적분의 의료 및 우주항공 응용 적분은 의료계에서 심박출량 계산, 우주항공에서 로켓 발사 높이 계산 등에 활용됩니다. 적분은 복잡한 곡선으로 싸인 부분을 얇게 나누어 계산하는 방식을 사용하므로, CT 촬영 등 의학 기술에도 적용됩니다. 2. 미분의 건축학 응용 미분은 곡선의 접선을 이용해 안전한 도로 설계의 기반이 됩니다. 곡선 도로에서 직선 도로로 진입할 때, 곡선 도로의 접선 방향으로 진입해야 안전하므로, 이를 위해 미분 공식이 설계에 사용됩니다. 1. 적분의 의료 및 우주항공 응용 적분은 의료 및 우주항공 분야에서 매우 중...2024.12.31
-
푸아죄유의 법칙을 이용한 체내 혈액 유속의 계산2025.05.081. 푸아죄유의 법칙 푸아죄유의 법칙은 1840년 프랑스의 물리학자 푸아죄유에 의해 유도된 방정식으로, 관을 흐르는 점성 유체의 유량에 관한 법칙을 말한다. 푸아죄유는 그 식을 혈류의 속도에도 적용할 수 있다는 가능성을 보여주었다. 이 법칙에 따르면 관이 길수록, 유체의 점도가 클수록, 관의 반지름이 작을수록 속도가 느려진다. 2. 혈류 속도 혈류 속도는 말그대로 몸 속에서 혈액이 혈관을 타고 흐르는 속도이다. 혈류는 동맥을 따라 심장에서 나갈 때의 속도가 가장 빠르고, 정맥을 따라 흐르다가 심장에 가까워질수록 느려진다. 혈관의 반...2025.05.08
-
3D 프린팅 속 미적분 원리와 바이오 분야에서의 활용2025.05.141. 3D 프린팅 기술 3D 프린팅은 모델링, 모델 변환, 프린팅, 표면처리 등 4가지 과정을 거치며, 그 중 슬라이싱 과정은 미분과 유사하고 적층제조 과정은 적분과 유사하다. 3D 프린팅은 초기에는 플라스틱을 주로 사용했지만 점차 다양한 재료로 확장되어 영화, 건축, 의료 등 여러 산업에 활용되고 있다. 2. 바이오 3D 프린팅 바이오 3D 프린팅은 인체의 기능 복원과 회복에 중점을 두고 있다. 이 기술을 통해 손상된 조직을 출력하여 이식할 수 있으며, 환자 개인에게 맞춤형으로 제작할 수 있어 면역반응 감소와 재료 낭비 감소, 제...2025.05.14