
총 89개
-
아마존의 클라우드 컴퓨팅 활동 요약2025.04.291. 광고 및 마케팅 기술 AWS는 퍼스트 파티 데이터 플랫폼, 데이터 협업, 광고 플랫폼, 광고 인텔리전스 및 다양한 고객 경험을 재정립하는데 도움이 되는 컴퓨팅, 기계 학습 및 분석 기능을 제공하여 광고 및 마케팅 혁신을 가속화하고 있다. 2. 금융 서비스 AWS는 뱅킹, 결제, 자본 시장, 보험 분야의 금융 서비스 기관에 안전하고 복원력 있는 글로벌 클라우드 인프라 및 서비스를 제공하여 미래의 니즈에 대응하는데 도움을 주고 있다. 3. 게임 기술 AWS for Games는 게임 구축, 실행 및 성장에 도움이 되는 6가지 솔루션...2025.04.29
-
경영정보시스템 ) 인공지능의 개념과 기술 그리고 활용사례에 대해 조사2025.01.241. 인공지능의 개념 인공지능의 정의는 범위에 따라 다양하지만, 포괄적인 범위로 인공지능을 정의 내리자면 인공지능이란 어떠한 문제를 스스로 해결할 수 있는 능력을 갖춘 시스템을 말한다. 즉, 인간의 지적 능력을 기계나 컴퓨터를 통해 구현하는 기술이다. 인공지능은 크게 약한 인공지능과 강한 인공지능으로 나눌 수 있다. 약한 인공지능은 특정한 분야나 목표만을 해결할 수 있는 인공지능을 뜻하며, 강한 인공지능은 다양한 목표를 해결할 수 있는 인공지능이다. 2. 인공지능 기술 - 기계학습 기계학습은 알고리즘을 연구하고 활용하는 기술로 엄청...2025.01.24
-
데이터마이닝의 정의와 활용 분야2025.01.181. 데이터마이닝의 정의 데이터마이닝은 대규모 데이터 세트에서 통계적이고 수학적인 기법을 활용하여 유용한 정보와 패턴을 추출하는 과정을 말한다. 이는 데이터베이스, 데이터 웨어하우스 또는 다양한 데이터 소스로부터 데이터를 수집하고 분석함으로써 이루어진다. 데이터마이닝은 기계 학습, 통계 분석, 패턴 인식, 인공지능 등의 다양한 분야의 기법과 원칙을 포괄하는 다중 학문적인 접근 방법을 사용한다. 2. 데이터마이닝 활용 분야: 상업 분야 온라인 소매업체는 고객의 구매 이력, 검색 기록, 선호도 등을 분석하여 개별 고객에게 맞춤형 제안을...2025.01.18
-
단 3개의 데이터만 가지고 모델 추정하기 (베이지안 추정, Python source code 예제 포함)2025.05.131. 베이지안 추정 베이지안 추정은 제한된 데이터를 활용하여 미지의 모델 매개변수를 추정하는 방법입니다. 이 예제에서는 PyMC3 라이브러리를 사용하여 베이지안 모델을 정의하고, MCMC 샘플링을 통해 매개변수의 사후 분포를 추출합니다. 이를 통해 불확실성을 고려하면서도 가능한 모든 시나리오를 종합적으로 고려하여 예측의 중심 경향을 나타낼 수 있습니다. 2. PyMC3 PyMC3는 확률적 프로그래밍 라이브러리로, 베이지안 모델링과 추론을 수행할 수 있습니다. 이 예제에서는 PyMC3를 사용하여 베이지안 모델을 정의하고, MCMC 샘...2025.05.13
-
데이터 확장하기 (Data Augmentation)2025.05.101. 데이터 확장 데이터 확장은 기존의 데이터를 사용하여 새로운 데이터를 생성하거나 추가 정보를 생성하는 프로세스를 말합니다. 이는 기계 학습 및 인공지능 분야에서 중요한 작업 중 하나입니다. 데이터 확장은 데이터셋의 크기와 다양성을 늘리는 데 도움이 됩니다. 큰 데이터셋은 모델의 성능과 일반화 능력을 향상시킬 수 있습니다. 더 다양한 데이터를 사용하면 모델이 다양한 패턴과 예외 상황을 인식하고 처리하는 데 더 효과적일 수 있습니다. 2. 데이터 확장 기법 데이터 확장은 주로 이미지 및 오디오 데이터 처리에서 많이 사용됩니다. 다양...2025.05.10
-
언어 변수와 헤지, 퍼지 집합 연산, 포함관계에 대해 서술하시오2025.01.271. 언어 변수 언어 변수는 수치 대신 언어적 표현을 사용하여 정보를 나타내는 방식입니다. 이는 모호하거나 불확실한 상황을 다루는 데 적합한 도구로, 사람들의 일상적인 의사소통 방식과 유사합니다. 언어 변수의 주요 특징은 모호성 및 가변성 반영, 맥락에 따른 유연한 해석 가능, 사람의 사고방식과 밀접한 연관성, 수학적 모델링 도구로의 활용 등입니다. 2. 헤지 연산 헤지 연산은 언어 변수의 의미를 조정하여 정보를 더 명확하고 세밀하게 전달하는 데 사용되는 기법입니다. 이를 통해 언어 변수의 강도나 범위를 조절하여 모호한 상황에서도 ...2025.01.27
-
경영정보시스템 리포트 (머신러닝, 딥러닝의 개요 및 활용)2025.01.221. 약한 인공지능과 강한 인공지능 오늘날의 과학계는 인공지능의 기준을 강한 인공지능과 약한 인공지능으로 나눈다. 강한 인공지능은 인간의 지능을 가진 컴퓨터로 스스로 일을 할 수 있고 지시를 거부할 수도 있다. 반면 약한 인공지능은 특정 영역의 문제를 해결하는 기술을 가진 인공지능으로 자아가 없기 때문에 한정적으로만 사람의 인지적 능력을 활용할 수 있다. 2. 기계 학습의 개념과 특징 기계 학습은 컴퓨터가 스스로 패턴에 따라 움직일 수 있도록 하는 기술이다. 데이터 과학자가 수많은 경우의 수 데이터를 입력하고 패턴을 식별시켜 인공지...2025.01.22
-
머신러닝의 3가지 학습 방법: 지도학습, 비지도 학습, 강화학습2025.01.041. 지도학습 지도학습은 입력과 출력 간의 관계를 학습하는 방식으로, 정답과 사례를 연결시켜주는 방식으로 이루어집니다. 데이터 집합을 통해 입력과 출력 간의 함수관계를 기계가 배우게 되며, 이렇게 얻어진 함수를 모델이라고 합니다. 지도학습으로 만들 수 있는 대표적인 것은 패턴 분류와 회귀분석입니다. 2. 비지도 학습 비지도학습은 입력 데이터 세트에 레이블을 달아주지 않고, 기계가 데이터를 묶을 수 있는 특징을 스스로 찾아내게 합니다. 비지도 학습은 데이터 집합 속에서 숨겨진 패턴을 배우며, 군집화를 이용해 서로 유사한 데이터를 묶습...2025.01.04
-
Covid-19 이후 4차 산업혁명 기술의 발전과 미래 산업에 미치는 영향2025.05.101. SNS 분석을 활용한 전염병 예측 캐나다의 AI 스타트업 '블루닷'은 중국 우한에서 발생한 Covid-19가 전 세계적으로 확산할 것이라는 예측을 가장 먼저 내놓았다. 이 회사는 Covid-19에 대해 2019년 12월 31일에 경보를 내렸고 질병통제예방센터(CDC)보다 1주일 빠르게, 세계보건기구(WHO)보다 10일이나 빠른 시점이었다. 전염병에 대한 추적 및 예측 시스템은 100가지 이상의 다양한 빅데이터와 전염병 확산에 대한 예측이 가능한 적절한 알고리즘이 결합하여 탄생했다. 자연어 처리 및 기계학습 등의 AI 기술을 이...2025.05.10
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10