
총 89개
-
퍼셉트론의 한계에 대한 논의2025.05.081. 퍼셉트론의 한계 퍼셉트론은 데이터에서 학습하고 정보를 분류하는 능력으로 주목받는 인공신경망이지만, 실제 적용을 제한하는 특정 한계가 있다. 주요 한계로는 선형적으로 분리 가능한 문제로 제한, 느린 수렴 속도, 초기 가중치에 민감, 이진 분류로 제한 등이 있다. 이러한 한계를 극복하기 위해 비선형 문제와 다중 클래스 분류를 처리할 수 있는 다층 퍼셉트론과 같은 보다 복잡한 신경망이 개발되었다. 1. 퍼셉트론의 한계 퍼셉트론은 선형 분리 가능한 문제만 해결할 수 있다는 한계가 있습니다. 이는 퍼셉트론이 입력 데이터를 단순히 선형 ...2025.05.08
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.05.041. 약한 인공지능과 강한 인공지능 약한 인공지능은 특정한 영역의 문제를 푸는 인공지능 기술로, 문제를 해결하거나 이상적인 업무 연구를 처리하는 데에 널리 사용된다. 약한 인공지능은 기초 데이터나 알고리즘, 규칙 등을 입력해야 한다. 약한 인공지능은 인간이 가지고 있는 인지적인 능력 중에서 한정적인 부분만 사고할 수 있다는 것이 한계이다. 강한 인공지능은 인간의 지능을 바탕으로 생각을 할 수 있는 컴퓨터이다. 강한 인공지능은 명령이 입력되지 않아도 스스로 학습을 할 수 있으며, 인공지능 스스로 보았을 때 지시 사항이 비합리적이라고 ...2025.05.04
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 인공지능의 개념과 분류 인공지능은 인간성이나 지능을 가진 존재나 시스템이 인위적으로 만들어낸 지능을 말한다. 일반적으로 컴퓨터가 인간에 의해 작동될 때 지능을 필요로 하는 업무를 수행하는 과학으로 정의되며, 컴퓨터가 스스로 인식하고 자율적으로 행동하는 것을 의미한다. 인공지능은 약한 인공지능과 강한 인공지능으로 분류된다. 2. 기계학습 및 딥러닝 기술 기계학습은 데이터에서 코드로 지정되지 않은 동작을 기계가 학습하고 실행할 수 있는 알고리즘을 개발하는 연구 분야이다. 딥러닝은 비선형 변환 기법의 조합을 통해 높은 수준의 추상화...2025.01.18
-
경영통계학_연속확률분포에 대하여 요약하여 정리하시오.2025.01.191. 연속확률분포의 정의 연속확률분포는 연속형 확률변수가 특정 구간 내의 값을 가질 확률을 나타내는 분포이다. 확률밀도함수를 통해 확률을 정의하며, 특정 값에서의 확률은 0이지만 구간 내의 확률은 양의 값을 가진다. 2. 주요 연속확률분포 대표적인 연속확률분포로는 정규분포, 지수분포, 균등분포가 있다. 정규분포는 평균과 표준편차를 매개변수로 가지며, 지수분포는 대기 시간이나 수명 데이터를 모델링하는 데 사용된다. 균등분포는 일정 범위 내의 모든 값이 동일한 확률을 가지는 분포이다. 3. 연속확률분포의 응용 연속확률분포는 품질 관리,...2025.01.19
-
경영정보시스템과 인공지능(AI) 기술의 발전 및 응용2025.01.241. 약한 인공지능과 강한 인공지능 인공지능은 수행 능력과 인지 수준에 따라 약한 인공지능(Narrow AI)과 강한 인공지능(General AI)으로 구분됩니다. 약한 인공지능은 특정 과제에 특화된 지능으로, 인간의 뇌와 같은 종합적 사고를 하진 않지만 특정 목적을 달성하기 위해 최적화된 지능입니다. 반면 강한 인공지능은 인간과 비슷한 수준의 종합적인 사고와 문제 해결 능력을 가진 지능을 목표로 합니다. 2. 기계학습의 개념과 특징 기계학습(Machine Learning)은 인공지능의 한 분야로, 컴퓨터가 데이터를 기반으로 스스로...2025.01.24
-
데이터 모델링에 관한 소고2025.05.101. 데이터 모델링 데이터 모델링은 예를 들어 제조 공정에서 발생하는 다양한 변수와 상호작용을 이해하고 표현하기 위한 기술입니다. 이를 통해 우리는 불량 발생에 영향을 미치는 주요 변수들을 식별하고, 이러한 변수들 간의 관계를 파악할 수 있습니다. 데이터 모델링을 통해 불량 발생 원인을 정확하게 분석하고, 불량율을 예측할 수 있는 모델을 구축할 수 있습니다. 2. 문제의 단순화: 단일 변수 표현 다변수 데이터를 예를 들어, 면적, 두께 등과 같은 기본적인 물리량으로 하나의 값으로 표현함으로써, 다양한 변수 간의 복잡한 관계를 단순화...2025.05.10
-
하둡 구현 보고서2025.05.071. VMware VMware는 가상 PC를 만들어 주는 프로그램으로, 실제 PC와 동일한 환경의 가상 PC를 만들 수 있다. 이를 통해 다른 운영체제를 설치하여 사용할 수 있다. 2. Hadoop Hadoop은 대용량 데이터를 적은 비용으로 빠르게 분석할 수 있는 소프트웨어이다. 여러 대의 컴퓨터로 데이터를 분석하고 저장하는 방식으로 비용과 시간을 단축할 수 있다. Hadoop은 HDFS(분산 데이터 저장)와 MapReduce(분산 처리) 프레임워크로 시작되었으며, 데이터 저장, 실행 엔진, 프로그래밍 등 Hadoop 생태계 전반...2025.05.07
-
AI 기계학습에 대한 설명2025.04.291. 기계학습 기계학습은 컴퓨터가 스스로 학습하는 방법 중 하나로, 특정 명령이나 프로그램의 지시 없이도 데이터를 기반으로 패턴을 인식하고 학습하는 방법입니다. 데이터의 라벨화 유무에 따라 지도형 학습과 비지도형 학습으로 나뉘며, 지도형 학습은 인간의 작업을 학습하는 방식으로 데이터를 라벨화하여 제공하고 이를 기반으로 학습을 진행합니다. 2. 패턴 인식 기계학습에서는 방대한 데이터를 기반으로 예측을 통해 확률적으로 패턴을 인식합니다. 정답 데이터와 새로운 데이터를 비교하여 유사성을 체크하고 이를 확률로 계산하여 특정 패턴을 인식하게...2025.04.29
-
[인공지능의세계 A+] 기말고사 문제풀이 객관식 + 서술형 + 단답형 문제+해설2025.05.101. 기계학습 기계학습은 인간의 학습능력을 기계나 컴퓨터에서 구현한 것으로, 지도학습과 비지도학습으로 구분할 수 있다. 지도학습은 학습 데이터의 정답이 주어지는 반면, 비지도학습은 정답이 주어지지 않는다. 신경망은 자동으로 가중치를 학습하는 기계학습 방식이다. 강화학습은 보상을 통해 최적의 행동을 학습하는 방식으로, 알파고가 자체 연습 대국을 통해 좋은 수를 학습하는 데 사용되었다. 2. 클러스터링 K-Means 클러스터링은 데이터를 K개의 클러스터로 분류하는 방법이다. K-Means 클러스터링의 단점은 k의 개수를 사전에 정해야 ...2025.05.10
-
딥러닝(Deep Learning) 기술의 활용 방안2025.05.101. 인공지능, 기계학습(Machine Learning), 딥러닝(Deep Learning)의 관계 인공지능의 영역 안에는 기계학습이 있고, 딥러닝은 기계학습의 한 분야이다. 최근 인공지능의 여러 기술 중에서도 기계학습의 딥러닝이 아주 놀랄만한 성과를 보여주고 있다. 2. 딥러닝 기술을 의료에 활용한 사례 또는 활용 방안 의료산업에서 딥러닝 기술이 적용되면서 매우 빠른 속도로 높은 정확도의 진단이 가능해지고 있다. 이를 활용하면 진단의 정확도는 높이면서도 투입되는 시간과 비용은 현저히 줄일 수 있다. 또한 개인에 최적화된 맞춤형케어...2025.05.10