
총 89개
-
인공지능의 개념과 기술 그리고 활용사례2025.05.161. 약한 인공지능과 강한 인공지능 약한 AI는 인간의 전체적인 인지능력을 필요로 하지 않는 정도의 문제 해결과 추론을 할 소프트웨어의 구현 및 연구를 가르킨다. 반면 강한 AI는 인간의 지능을 가지고 생각을 할 수 있는 컴퓨터를 말한다. 강한 AI는 아직 연구와 신중한 개발이 진행 중이다. 2. 기계학습 기계학습은 컴퓨터 시스템이 데이터를 학습하고 패턴을 파악하여 결정을 내릴 수 있도록 하는 기술이다. 이는 예측, 분류, 군집 등의 작업에서 효과적으로 활용된다. 기계학습은 데이터의 양과 품질이 핵심적인 역할을 하며, 데이터의 수학...2025.05.16
-
인공지능 특징 및 관련 산업군 정리2025.05.011. 인공지능의 역사 인공지능은 1956년 미국 다트머스 컨퍼런스에서 처음 등장했으며, 이후 논리학, 심볼릭 AI, 전문가 시스템, 기계 학습 등 다양한 분야에서 발전해왔습니다. 1980년대 중반에는 전문가 시스템과 인공신경망 분야에서 발전이 있었고, 1990년대에는 기계 학습 기술이 대중화되면서 인공지능 연구에 다시 활기가 돌아왔습니다. 2000년대에는 대량의 데이터 처리와 딥러닝 기술의 발전으로 인공지능 기술이 급속히 발전하고 있으며, 현재 이미지 인식, 음성 인식, 자연어 처리 등 다양한 분야에서 활용되고 있습니다. 2. 인공...2025.05.01
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오.2025.05.121. 인공지능이란 인공지능이란 인간 지능이 필요한 업무 등을 정상적으로 수행할 수 있는 컴퓨터 시스템의 이론과 개발, 그리고 시각 인식, 음성 인식, 의사 결정, 언어 번역 등을 수행하는 어플리케이션이나 능력을 의미한다. 2. 인공지능의 분류 인공지능은 강한 인공지능과 약한 인공지능으로 구분된다. 강한 인공지능은 사람과 같이 자유로운 사고와 감정표현 등을 하는 것이 가능하고 자아의식을 가지고 있는 인공지능을 의미하며, 약한 인공지능은 자의식이 없는 머신러닝 기법으로 만들어진 전문가 시스템을 의미한다. 3. 기계학습 기계학습은 컴퓨터...2025.05.12
-
인공지능의 개념과 기술 그리고 활용사례2025.01.231. 인공지능의 개념 인공지능은 인간의 지적 활동을 모방하거나 이를 능가하는 기계를 만드는 학문 및 기술을 의미합니다. 인공지능은 크게 약한 인공지능과 강한 인공지능으로 구분됩니다. 약한 인공지능은 특정한 작업이나 문제를 해결하기 위해 설계된 시스템을 의미하며, 강한 인공지능은 인간과 동일한 수준의 인지 능력과 지능을 가지는 시스템을 의미합니다. 2. 인공지능 기술 인공지능 기술의 핵심은 기계학습(Machine Learning)과 딥러닝(Deep Learning) 알고리즘에 있습니다. 기계학습은 데이터를 통해 학습하고 경험을 바탕으...2025.01.23
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
Covid-19 이후 4차 산업혁명 기술의 발전과 미래 산업에 미치는 영향2025.05.101. SNS 분석을 활용한 전염병 예측 캐나다의 AI 스타트업 '블루닷'은 중국 우한에서 발생한 Covid-19가 전 세계적으로 확산할 것이라는 예측을 가장 먼저 내놓았다. 이 회사는 Covid-19에 대해 2019년 12월 31일에 경보를 내렸고 질병통제예방센터(CDC)보다 1주일 빠르게, 세계보건기구(WHO)보다 10일이나 빠른 시점이었다. 전염병에 대한 추적 및 예측 시스템은 100가지 이상의 다양한 빅데이터와 전염병 확산에 대한 예측이 가능한 적절한 알고리즘이 결합하여 탄생했다. 자연어 처리 및 기계학습 등의 AI 기술을 이...2025.05.10
-
물리 정보화 신경망(Physics-Informed Neural Network, PINN)2025.05.101. 물리 정보화 신경망(Physics-Informed Neural Network, PINN) 물리 정보화 신경망(Physics-Informed Neural Network, PINN)은 물리학적인 지식을 신경망 구조에 통합하여 과학적 모델링 및 예측에 사용되는 기술입니다. 이 방법은 데이터 기반 기계 학습과 물리학적 모델링을 결합하여 주어진 물리적 시스템에 대한 효율적인 모델링을 수행할 수 있습니다. PINN은 물리학적 법칙과 제약 조건을 신경망 아키텍처에 내재화하여 물리학적 문제를 해결하며, 제한된 데이터 세트로부터 모델을 학습하...2025.05.10
-
[학과 소개] 빅데이터학과 및 정보보안학과2025.05.101. 빅데이터학과 빅데이터학과는 4차 산업혁명을 선도하는 핵심 SW 기술인 인공지능, 기계학습, 딥러닝, 컴퓨터 비전에서의 데이터 수집·처리·가공·검색·학습 등의 데이터 과학에 대한 최신 지식을 습득하는 것을 목표로 하고 있습니다. 또한 컴퓨터과학 분야의 필수 전공지식을 바탕으로 정보통신 산업 전 분야에서의 데이터(수치 데이터뿐 아니라 문자와 영상 데이터를 포함하는 대규모 데이터)를 처리할 수 있는 인력을 양성합니다. 2. 정보보안학과 정보보안학과는 사물인터넷 시대에 사물 간 신호와 소통이 인터넷을 통해 이루어지면서 중요해진 보안 ...2025.05.10
-
인공지능의 개념과 기술 그리고 활용사례2025.05.131. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 특정 목적을 위해 개발된 인공지능으로, 스스로 인식할 수는 없지만 인공적인 기능을 만들어낼 수 있다. 반면 강한 인공지능은 스스로 인식하여 고도의 문제를 해결할 수 있는 지능을 만들어내는 것을 말한다. 현재 약한 인공지능은 많이 발전했지만 강한 인공지능의 발전은 미약한 상황이다. 2. 기계학습의 개념과 특징 기계학습은 컴퓨터 프로그램이 데이터 처리 경험을 바탕으로 향상된 학습을 통해 정보 처리 능력을 향상시키는 기술이다. 정보 처리 능력을 향상시켜 방대한 데이터를 바탕으로 ...2025.05.13
-
아마존의 클라우드 컴퓨팅 활동 요약2025.04.291. 광고 및 마케팅 기술 AWS는 퍼스트 파티 데이터 플랫폼, 데이터 협업, 광고 플랫폼, 광고 인텔리전스 및 다양한 고객 경험을 재정립하는데 도움이 되는 컴퓨팅, 기계 학습 및 분석 기능을 제공하여 광고 및 마케팅 혁신을 가속화하고 있다. 2. 금융 서비스 AWS는 뱅킹, 결제, 자본 시장, 보험 분야의 금융 서비스 기관에 안전하고 복원력 있는 글로벌 클라우드 인프라 및 서비스를 제공하여 미래의 니즈에 대응하는데 도움을 주고 있다. 3. 게임 기술 AWS for Games는 게임 구축, 실행 및 성장에 도움이 되는 6가지 솔루션...2025.04.29