
총 45개
-
인공지능의 개념과 기술 그리고 활용사례2025.01.231. 인공지능의 개념 인공지능은 인간의 지적 활동을 모방하거나 이를 능가하는 기계를 만드는 학문 및 기술을 의미합니다. 인공지능은 크게 약한 인공지능과 강한 인공지능으로 구분됩니다. 약한 인공지능은 특정한 작업이나 문제를 해결하기 위해 설계된 시스템을 의미하며, 강한 인공지능은 인간과 동일한 수준의 인지 능력과 지능을 가지는 시스템을 의미합니다. 2. 인공지능 기술 인공지능 기술의 핵심은 기계학습(Machine Learning)과 딥러닝(Deep Learning) 알고리즘에 있습니다. 기계학습은 데이터를 통해 학습하고 경험을 바탕으...2025.01.23
-
경영정보시스템 리포트 (머신러닝, 딥러닝의 개요 및 활용)2025.01.221. 약한 인공지능과 강한 인공지능 오늘날의 과학계는 인공지능의 기준을 강한 인공지능과 약한 인공지능으로 나눈다. 강한 인공지능은 인간의 지능을 가진 컴퓨터로 스스로 일을 할 수 있고 지시를 거부할 수도 있다. 반면 약한 인공지능은 특정 영역의 문제를 해결하는 기술을 가진 인공지능으로 자아가 없기 때문에 한정적으로만 사람의 인지적 능력을 활용할 수 있다. 2. 기계 학습의 개념과 특징 기계 학습은 컴퓨터가 스스로 패턴에 따라 움직일 수 있도록 하는 기술이다. 데이터 과학자가 수많은 경우의 수 데이터를 입력하고 패턴을 식별시켜 인공지...2025.01.22
-
딥러닝 2024년 2학기 방송통신대 출석수업과제물) 인공신경망과 관련된 설명 중 올바른 것을 선택하시오. 다층 퍼셉트론의 구조를 확장하는 방법 등2025.01.261. 인공신경망 인공신경망은 생물학적 뉴런의 작동 원리를 모방하여 만든 기계 학습 모델입니다. 다층 퍼셉트론(MLP)은 인공신경망의 한 형태로, 입력층, 하나 이상의 은닉층, 그리고 출력층으로 구성됩니다. 인공신경망은 복잡한 문제를 해결할 수 있는 능력이 있으며, 활성화 함수를 통해 비선형 관계를 학습할 수 있습니다. 2. 경사 하강법 경사 하강법은 손실 함수의 기울기를 계산하고 이를 활용하여 가중치를 업데이트하는 최적화 알고리즘입니다. 보폭 크기(learning rate)가 너무 크면 손실 함수가 발산하는 문제가 발생할 수 있습니...2025.01.26
-
데이터마이닝의 정의와 활용 분야2025.01.181. 데이터마이닝의 정의 데이터마이닝은 대규모 데이터 세트에서 통계적이고 수학적인 기법을 활용하여 유용한 정보와 패턴을 추출하는 과정을 말한다. 이는 데이터베이스, 데이터 웨어하우스 또는 다양한 데이터 소스로부터 데이터를 수집하고 분석함으로써 이루어진다. 데이터마이닝은 기계 학습, 통계 분석, 패턴 인식, 인공지능 등의 다양한 분야의 기법과 원칙을 포괄하는 다중 학문적인 접근 방법을 사용한다. 2. 데이터마이닝 활용 분야: 상업 분야 온라인 소매업체는 고객의 구매 이력, 검색 기록, 선호도 등을 분석하여 개별 고객에게 맞춤형 제안을...2025.01.18
-
인공지능의 개념과 기술 그리고 활용사례2025.01.181. 인공지능의 개념과 분류 인공지능은 인간성이나 지능을 가진 존재나 시스템이 인위적으로 만들어낸 지능을 말한다. 일반적으로 컴퓨터가 인간에 의해 작동될 때 지능을 필요로 하는 업무를 수행하는 과학으로 정의되며, 컴퓨터가 스스로 인식하고 자율적으로 행동하는 것을 의미한다. 인공지능은 약한 인공지능과 강한 인공지능으로 분류된다. 2. 기계학습 및 딥러닝 기술 기계학습은 데이터에서 코드로 지정되지 않은 동작을 기계가 학습하고 실행할 수 있는 알고리즘을 개발하는 연구 분야이다. 딥러닝은 비선형 변환 기법의 조합을 통해 높은 수준의 추상화...2025.01.18
-
경영정보시스템_인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.01.181. 약한 인공지능과 강한 인공지능의 비교 약한 인공지능은 단순히 인간의 능력 일부를 시뮬레이션하는 것으로, 특정 분야에 한정해 인간의 지능을 흉내 내는 지능적인 활동을 의미한다. 반면 강한 인공지능은 자신만의 자아를 가지고 있는 컴퓨터로, 인간과 유사하거나 뛰어넘는 수준의 능력을 가지고 있어 스스로 학습하고 자아의식과 감정도 가진다. 2. 기계학습의 개념과 특징 기계학습은 데이터로부터 프로그램을 자동으로 생성하는 기술로, 사람이 학습하듯이 컴퓨터에 데이터를 입력해 놓고 학습하게 함으로써 새로운 지식을 얻어내게 하는 분야이다. 기계...2025.01.18
-
모방학습 4단계 상세 설명 및 개인 경험 공유2025.01.291. 모방학습의 4단계 모방학습은 데이터 수집, 데이터 전처리, 정책 학습, 평가 및 개선의 4단계로 구성됩니다. 데이터 수집 단계에서는 전문가나 시범자의 작업을 기록하여 학습에 필요한 데이터를 확보합니다. 데이터 전처리 단계에서는 수집된 데이터를 정제하고 구조화하는 과정이 필요합니다. 정책 학습 단계에서는 전처리된 데이터를 바탕으로 모델이 최적의 행동 정책을 학습하게 됩니다. 마지막으로 평가 및 개선 단계에서는 학습된 모델의 성능을 평가하고, 필요에 따라 모델을 개선하는 과정이 이루어집니다. 2. 모방학습 적용 사례 및 경험 프로...2025.01.29
-
빅데이터의 특징과 장단점 및 합리적인 활용방안2025.01.081. 빅데이터의 특징 빅데이터의 특성은 규모(Volume), 다양성(Variety), 속도(Velocity)로 정의된다. 규모는 데이터의 양이 매우 크다는 것을 의미하며, 다양성은 정형 데이터뿐만 아니라 비정형, 반정형 데이터도 포함된다는 것을 의미한다. 속도는 데이터가 처리되는 속도를 뜻하며, 신속한 데이터 분석이 더 큰 미래를 예측하고 가치를 제공할 수 있다. 2. 빅데이터의 장단점 빅데이터의 장점은 성공 사례를 통해 확인할 수 있다. 대표적으로 2008년 미국 대통령 선거에서 오바마 캠프가 유권자 데이터베이스를 구축하고 이를 ...2025.01.08
-
빅데이터와 통계학_탐구보고서_확통(세특)2025.01.111. 빅데이터와 통계학 빅데이터는 기존의 데이터 베이스 관리도구의 데이터 수집, 저장, 관리, 분석의 역량을 넘어서는 대량의 정형 또는 비정형의 데이터 세트 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 정보 통신 기술의 발달, 빅데이터에 대한 효율적인 저장 및 분석의 가능, 국가간 기술 격차 감소로 인해 빅데이터에 대한 관심이 높아지고 있다. 의료산업, 맞춤형 마케팅, 제조업 등 다양한 분야에서 빅데이터가 응용되고 있다. 따라서 빅데이터 시대에 가치를 추출하고 결과를 분석하는 분야와 밀접한 관련이 있는 ...2025.01.11
-
인공지능의 개념과 기술 그리고 국내외의 활용사례2025.01.181. 약한 인공지능 약한 인공지능은 기존의 프로그래밍을 통해 직접 명령을 입력하고 자동화하는 소프트웨어와 같은 전문가 시스템을 의미한다. 지능 요소가 없어 인간의 개입이 필요하지만, 축적된 소프트웨어와 오픈소스, 협력 이력을 바탕으로 점점 정교한 프로그래밍과 설계가 가능해지고 있다. 2. 강한 인공지능 강한 인공지능은 사람처럼 생각하고 감정을 표현할 수 있으며 자의식을 가진 인공지능을 의미한다. 기계학습 시 인간의 보상 체계를 따르는 경향이 강해 상식적인 행동을 보이지 않을 수 있다는 한계가 있지만, 자율주행차와 같이 특정 분야에서...2025.01.18