
총 91개
-
나일론 합성 실험2025.01.041. 고분자 합성 이번 실험에서는 최초의 합성 고분자인 나일론의 합성 실험을 통해 고분자의 합성 방법을 익히고자 한다. 고분자는 단량체의 화학반응에 의해 일정한 반복단위를 가진 긴 사슬로 이루어진 분자로, 단일중합체와 공중합체로 구분된다. 합성 고분자는 열가소성과 열경화성으로 나뉘며, 나일론은 대표적인 열가소성 합성 고분자이다. 나일론은 축합 중합 반응을 통해 합성되며, 다양한 중합 방법 중 계면 중합 방법을 사용하여 제조할 수 있다. 2. 나일론 6,10 합성 나일론 6,10은 헥사메틸렌다이아민과 염화세바코일의 축합 중합 반응을 ...2025.01.04
-
스타이렌의 유화 중합 A+ 결과보고서2025.04.281. 유화 중합 유화 중합은 부가중합에 의하여 중합될 수 있는 고분자의 생산에 사용되는 중합 방법이다. 유화 중합반응계는 monomer와 분산매 및 계면활성제와 분산매에 용해되는 개시제로 이루어진다. 유화 중합은 분산매에 의하여 반응액의 유동성이 좋은 상태로 유지되므로 반응열의 제거가 용이하고 높은 분자량을 가지는 고분자를 중합 속도가 높게 유지되는 상태에서 생산할 수 있다. 2. 유화 중합의 특징 유화 중합을 다른 중합법과 비교하면 반응온도의 조절이 용이하고, 중합속도와 분자량을 동시에 증대시킬 수 있으며, 중합도가 큰 것 또는 ...2025.04.28
-
폴리비닐알코올(Poly(vinyl alcohol))의 합성 A+ 결과보고서2025.04.281. 폴리비닐알코올(Poly(vinyl alcohol)) 합성 실험을 통해 폴리비닐알코올(PVA)의 합성 과정을 이해하고 있다. PVA는 섬유, 호제, 접착제 등으로 사용되는 중요한 고분자이며, 비닐알코올 단량체가 불안정하여 직접 중합할 수 없기 때문에 폴리비닐아세테이트(PVAc)를 에스테르 교환반응을 통해 PVA로 전환하는 방법으로 합성한다. 실험에서는 PVAc와 메탄올, NaOH를 이용하여 PVA를 합성하고 수율을 측정하였다. 수득률이 높게 나온 이유에 대해 여러 가지 요인을 고찰하였다. 1. 폴리비닐알코올(Poly(vinyl ...2025.04.28
-
고분자합성실험 - 스타이렌(Styrene)과 메틸메타크릴레이트(MMA)의 공중합2025.05.061. 공중합반응과 공중합방정식 단량체 M1과 M2가 라디칼중합하여 공중합체를 생성할 때 성장하고 있는 공중합체 사슬의 반응성이 사슬의 말단에 존재하는 라디칼에만 의존한다고 가정하면 성장반응은 4가지로 표현할 수 있다. 이때 각 성장 반응은 비가역적이라고 가정하면, 단량체 M1과 M2가 없어지는 속도는 식 (5)와 식 (6)으로 각각 표시된다. 식 (7)에서 M1과 M2의 단량체 반응성비 r1과 r2는 식 (8)과 식 (9)로 정의된다. 식 (10)은 공중합식이라 하며, 이 식에서 F는 두 단량체가 소모되는 속도비를 뜻하고 이것은 결...2025.05.06
-
계면중합에 의한 나일론(Nylon) 6, 10의 합성2025.05.061. 나일론 합성 나일론은 직물용의 섬유로서 널리 사용된 첫 번째 합성고분자이다. 나일론-6,10을 계면중합 반응으로 제조함으로써 계면중합의 원리와 특징을 알 수 있다. 나일론을 계면중합을 통하여 합성하고, 계면중합에 의한 고분자의 특성을 이해할 수 있다. 2. 중합 반응 원리 중합의 두 가지 주요 유형에는 연쇄중합과 단계중합이 있다. 연쇄중합은 단량체에서 연쇄적으로 성장하는 중합에 비해 단계중합은 단량체, 올리고머 및 기타 고분자 사슬의 추가를 통해 고분자 사슬이 성장할 수 있다. 단계중합은 양쪽으로 기능적인 단량체의 반응으로 성...2025.05.06
-
고분자합성실험 - 스타이렌(Styrene)의 유화중합2025.05.061. 유화중합 유화중합은 부가중합에 의하여 중합될 수 있는 고분자 생산에 사용되는 중합방법이다. 유화중합 반응계는 monomer와 분산매 및 계면활성제와 분산매에 용해되는 개시제로 이루어진다. 유화중합은 분산매에 의하여 반응액의 유동성이 좋은 상태로 유지되므로 반응열의 제거가 용이하고 높은 분자량을 가지는 고분자를 생산하기 위하여는 개시제의 농도 혹은 중합온도를 낮추는 것이 필요하므로 생산량의 감소가 수반될 수 밖에 없다. 2. 유화중합의 장단점 유화중합의 장점은 발열반응에 의한 반응열을 다루기 쉽고, 중합속도와 분자량을 동시에 증...2025.05.06
-
페놀(Phenol) 수지의 합성2025.05.061. 페놀 수지 합성 페놀과 포름알데히드의 축합반응을 통해 페놀 수지를 산 촉매와 염기 촉매 하에서 직접 제조하고, 그 메커니즘을 이해할 수 있다. 페놀 수지는 1872년 독일의 베이어에 의해 처음 합성되었으며, 1907년 미국의 배클랜드에 의해 성형폼이 개발되면서 Bakelite라는 상품명으로 널리 사용되고 있다. 페놀 수지는 우수한 전기절연성, 기계적 강도, 화학적 안정성 및 내열성으로 다양한 분야에 응용되고 있다. 2. 페놀 수지의 반응 메커니즘 산 촉매 하에서 페놀과 포름알데히드를 반응시키면 사슬구조를 가지는 Novolac이...2025.05.06
-
에폭시 수지 합성과 가교 [고분자 실험 A+ 레포트]2025.05.051. 에폭시 수지 합성 에폭시 수지(Epoxy Resins)는 일반적으로 Hydroxyl기를 2개 이상 갖는 화합물과 Epichlorohydrin을 반응시켜 얻는다. 이 에폭시기의 강한 반응성으로 인하여 에폭시 수지는 여러 화합물들과 반응할 수 있으므로 다양한 물성의 고분자 물질을 합성할 수 있다. 일반적으로 에폭시 수지는 경화제를 첨가하여 열경화성의 물질로 변화시킨 상태로 사용되는 것이 보통이므로 순수한 에폭시 수지는 수지의 중간체라고 할 수 있다. 2. 에폭시 수지의 가교 반응 경화는 고분자 화학 및 공정 공학에서 사용되는 화학...2025.05.05
-
고분자합성실험 - 스타이렌(Styrene)의 용액중합2025.05.061. 용액중합 용액중합(Solution polymerization)은 용매중에서 모노머를 중합시키는 방법으로, 사용되는 용매가 모노머와 생성된 고분자를 모두 용해시키면 균일계 용액중합(homogeneous solution polymerization)이라 하고, 모노머만 용해시키는 경우를 불균일계 용액중합(heterogeneous solution polymerization)이라 한다. 용액중합은 발열반응에 의한 반응열을 제거할 수 있고, 사용되는 용매만 잘 선택하면 중합도를 조절할 수 있는 장점이 있다. 2. 스타이렌(Styrene)...2025.05.06
-
고분자합성실험 - 비닐 단량체 및 라디칼 개시제의 정제2025.05.061. 단량체 정제 단량체의 순도는 중합된 고분자의 질을 결정하는 매우 중요한 척도이다. 단량체에 포함된 불순물은 중합 속도 및 생성된 고분자의 분자량에 큰 영향을 미칠 수 있다. 따라서 단량체에 포함된 불순물을 제거하여 단량체의 순도를 높이는 것이 중요하다. 이번 실험에서는 스티렌 단량체에 포함된 중합금지제를 제거하는 방법을 다루었다. 2. 중합금지제 제거 중합금지제는 중합개시제 또는 단량체로서 된 라디칼과 먼저 반응하여 라디칼성을 소실시켜 안정화시킨 후 중합반응을 금지시키는 물질이다. 이번 실험에서는 스티렌 단량체에 포함된 페놀계...2025.05.06