
총 136개
-
방송통신대학교 수리통계학 출석수업 과제물 (30점 만점 A+)2025.01.261. J. Neyman(네이만)과 E.S. Pearson(이곤 피어슨)의 업적과 교류 20세기 초 일군의 통계학자들이 작은 수의 데이터를 확률모형과 연결하여 분석, 추론하기 시작하면서 현대 통계학이 형성되기 시작했고, 널리 알려져 있다시피 20세기가 시작되자마자 나온 K.Pearson(칼 피어슨), W.Gosset(고셋) 등의 연구에 이어 통계적 검정법 연구에서 큰 획을 그은 인물은 R.A.Fisher(피셔), J.Neyman(네이만), E.S.Pearson(이곤 피어슨) 등이었다. 본 과제에서는 여러 통계학자들 중 서로 교류하고 ...2025.01.26
-
확률이론에 대하여 요약하여 정리하시오2025.01.181. 확률의 공준 및 확률분포 확률의 공준은 고전적 개념에 속하기 때문에 주관적 개념을 통해 확률을 부여하면 문제가 발생한다. 때문에, 확률을 정의하는 대신 세가지 조건을 만족하면 이를 곧 확률로 한다는 것이 '확률의 공준'이다. 확률분포란 실험이나 관찰에서 시행 가능한 사상으로 구성된 표본공간의 확률 변수를 확률 값으로 이어주는 함수이다. 2. 확률법칙에 대한 정리 덧셈법칙은 여러 개의 사상 중 적어도 하나의 사상이 발생할 확률을 뜻한다. 여확률의 법칙에서 여확률이란 사상 A의 여사건이라고 한다면 사상 A가 일어나지 않은 확률이라...2025.01.18
-
심슨의 역설과 그 발생 원인 및 사례 분석2025.01.181. 심슨의 역설 심슨의 역설은 서로 다른 가중치를 적용하여 부품의 결과와 전체적인 분석 결과 사이의 불일치가 발생하는 현상을 말한다. 이는 확률 변수 간의 상관관계에 의해 발생하며, 중요한 변수가 무시되거나 각 부품의 표본 크기나 비율에 가중치가 주어지지 않은 경우에 나타난다. 예를 들어 공대와 식품영양학과의 합격률 차이로 인해 전체 합격률이 달라지는 사례를 통해 심슨의 역설을 설명할 수 있다. 2. 심슨의 역설 발생 원인 심슨의 역설은 통계학적 관점에서 확률 변수 간의 상관관계에 의해 발생한다. 예를 들어 T와 S 사이의 기존 ...2025.01.18
-
기술통계와 추론통계의 개념과 예시2025.01.041. 기술통계 기술 통계는 표본 자체의 속성을 파악하는 데 초점을 맞추는 데이터 분석통계입니다. 표본에 속한 대상자들의 인구통계학적 속성과 연구 문제나 가설에 포함된 개별적인 변인에 대한 표본 대상자의 응답을 특정 통계량을 사용하여 요약합니다. 기술 통계는 데이터의 합리적인 요약 능력이 있어 상당한 크기의 표본으로부터 엄청난 양의 데이터를 수집하고 있는 커뮤니케이션 연구에서 유용하게 사용됩니다. 예를 들어 국민 1인당 평균 소득이나 소득 분배 등을 기술통계로 설명할 수 있습니다. 2. 추론통계 추론 통계는 확률이론을 사용해 표본의 ...2025.01.04
-
이산확률분포에 대하여 요약하여 정리하시오2025.05.081. 이산확률분포 이산 확률 분포는 이산 확률 변수가 가지고 있는 확률 분포를 의미합니다. 이산 확률 변수는 확률 변수가 가질 수 있는 값의 개수가 가산적으로 존재한다는 것을 의미합니다. 이산 확률 분포에는 베르누이 분포, 이항 분포, 기하 분포, 음이항 분포, 포아송 분포, 초기하 분포, 다항 분포 등이 있습니다. 이러한 이산 확률 분포는 통계학에서 불확실한 상황 속에서 합리적인 사고와 의사결정을 하는데 기초가 되고 있습니다. 1. 이산확률분포 이산확률분포는 확률론과 통계학에서 매우 중요한 개념입니다. 이산확률분포는 이산적인 확률...2025.05.08
-
MCMC를 활용한 베이지안 추론 - 동전 던지기 문제의 확률 추정 (파이썬예제풀이 포함)2025.05.091. MCMC(Markov Chain Monte Carlo) MCMC는 머신러닝과 통계학 분야에서 중요한 역할을 하는 AI(인공지능) 기법 중 하나입니다. MCMC는 복잡한 확률분포를 추정하거나 샘플링하기 위해 사용되며, 특히 베이지안 추론과 관련된 문제에 유용하게 적용됩니다. MCMC는 몬테카를로(Monte Carlo) 방법과 마코프 체인(Markov Chain)을 결합한 알고리즘으로, 마코프 체인을 이용하여 탐색 공간을 효과적으로 탐색하고 샘플링을 수행합니다. 2. 동전 던지기 문제 동전 던지기 문제는 간단하면서도 직관적인 문제...2025.05.09
-
경영통계학 이산확률변수와 연속확률변수의 차이 및 확률밀도함수 설명2025.04.281. 이산확률변수 이산확률변수는 모든 가능한 값이 유한하며, 각각의 값 사이의 차이가 통계적 의미를 갖고 있다. 이처럼 서로 인접한 단위 사이에서 존재할 수 있는 값들의 수는 유한이며, 확률은 각각의 특정 값들에 대응하여 할당된다. 이산확률변수는 표본 공간의 단위 사상이 취할 수 있는 모든 실수의 값을 나열할 수 있는 확률변수이다. 2. 연속확률변수 연속확률변수는 모든 가능한 값이 무한이며, 각각의 값 사이의 차이가 큰 통계적 의미는 없는 경우가 많다. 또한 서로 인접한 단위 사이에서 존재할 수 있는 값들의 수는 무한이며, 확률은 ...2025.04.28
-
로널드 피셔와 제레지 네이만의 통계학 업적과 교류2025.01.241. 로널드 피셔의 업적 로널드 피셔는 통계적 유의성 개념과 최대 우도 추정법을 도입하여 통계학의 발전에 기여했다. 그의 연구는 실험 설계와 데이터 분석의 기초를 마련하는 데 중요한 역할을 했다. 2. 제레지 네이만의 업적 제레지 네이만은 네이만-피셔-피어슨 가설 검정 이론을 개발하여 통계적 가설 검정의 체계적인 절차를 확립했다. 이를 통해 통계적 의사결정의 명확한 기준을 제시했다. 3. 피셔와 네이만의 교류 및 논쟁 피셔와 네이만은 통계적 가설 검정 이론을 둘러싸고 활발한 논쟁을 벌였다. 이는 통계학의 이론적 토대를 강화하고 다양...2025.01.24
-
2023년 1학기 통계학개론 출석수업 중간과제 리포트 30점 만점2025.01.251. 히스토그램 그리기 12명의 학생이 읽은 책 수에 대한 히스토그램을 그렸습니다. 히스토그램을 통해 데이터의 분포를 시각적으로 확인할 수 있습니다. 2. 상자그림 그리기 12명의 학생이 읽은 책 수에 대한 상자그림을 그렸습니다. 상자그림을 통해 데이터의 다섯 수치 요약(최소값, 1사분위수, 중앙값, 3사분위수, 최대값)을 확인할 수 있습니다. 3. t 검정 12명의 학생이 읽은 책 수에 대한 t 검정을 수행했습니다. t 검정 결과 p-value가 매우 작게 나와 해당 데이터가 통계적으로 유의미하다고 해석할 수 있습니다. 4. 대응...2025.01.25
-
행정계량분석3 행정계량분석강의 전체를 통해 해결하기로 설정한 연구문제 무작위 표본추출의 산술평균 분산 표준편차 정규분포의 특징 중심극한정리02025.01.251. 행정계량분석 행정계량분석(Quantitative Analysis in Public Administration)은 행정학에서 사용되는 통계 및 수량적 기법을 적용하여 정부 및 공공기관의 의사결정 및 정책평가에 대한 이해를 높이는 분석 방법론이다. 이는 통계적 도구와 기법을 사용하여 공공부문에서 발생하는 다양한 문제에 대한 데이터 기반의 분석을 수행함으로써 효율적인 의사결정을 지원한다. 2. 무작위 표본추출 무작위 표본추출은 연구나 조사에서 표본을 선정하는 과정에서 모집단의 각 구성원이 선택될 확률이 동등하도록 하는 방법론이다. ...2025.01.25