
총 61개
-
전류가 흐르는 도선에 작용하는 자기력2025.05.131. 대전된 입자의 자기력 진공에서 대전된 입자가 균일한 자기장 내에서 받는 자기력은 qvBsin theta 로 표현된다. 여기서 q는 입자의 전하량, v는 입자의 속도, B는 자기장의 세기, theta는 입자의 운동방향과 자기장 방향 사이의 각도이다. 2. 전류가 흐르는 도선의 자기력 길이 L인 도선에 전류 I가 흐르고 자기장 방향과 전류 방향 사이의 각이 theta일 때, 도선이 받는 자기력 F의 크기는 F=ILBsin theta로 표현된다. 실험 결과 전류가 증가할수록, 도선의 길이가 길어질수록, 자기장의 세기가 강해질수록 자...2025.05.13
-
운동 기전력과 유도 전기장 정리2025.04.281. 운동 기전력 운동 기전력은 고립된 계에서 움직이는 막대에 대전된 입자에 작용하는 힘에 의해 발생합니다. 막대 내 움직이는 자유 전자로 인해 반대 방향의 끝으로 초과 전류가 발생하고, 이로 인해 전기장이 유도됩니다. 전기력과 자기력이 평형을 이루면 유도기전력이 발생하며, 이는 막대의 이동 속도, 자기장, 도선의 길이의 곱으로 표현됩니다. 닫힌 고리 내 운동 기전력은 벡터 곱으로 나타낼 수 있습니다. 2. 유도 전기장 변화하는 자기장 내 고정된 도체에서 유도기전력이 발생합니다. 솔레노이드 내 전류 변화에 따른 자속 변화로 유도기전...2025.04.28
-
전류고리에 의한 자기장에 대해서2025.04.251. 전류고리와 자기쌍극자 전류고리가 외부 자기장에 놓여있으면 자기쌍극자 모멘트 벡터와 자기장 벡터의 곱에 의한 힘이 작용한다. 자기쌍극자 모멘트의 방향은 S극에서 N극으로 향하며, 크기는 도선이 감긴 횟수(N)와 단면적(A)에 비례한다. 전류의 세기(i)도 자기쌍극자 모멘트의 크기와 방향에 영향을 준다. 2. 전류고리가 만드는 자기장 하나의 원형 고리가 고리의 수직 중심축 위의 한 점에 만드는 자기장은 B(z) = (μ0 iR^2) / (2(R^2 + z^2)^(3/2))로 나타낼 수 있다. 이때 자기장의 방향은 자기 쌍극자 모멘...2025.04.25
-
전류고리와 자기쌍극자2025.04.251. 전류고리와 자기쌍극자 전류고리와 자기쌍극자에 대해 설명하고 있습니다. 전류고리가 만드는 자기장과 전류고리에 흐르는 자기장에 관한 식을 증명하고 있습니다. 2. 전류고리가 만드는 자기장 전류고리가 만드는 자기장을 Biot-Savart 법칙을 이용하여 설명하고 있습니다. 전류고리의 반지름과 중심으로부터의 거리에 따른 자기장의 크기와 방향을 수식으로 나타내고 있습니다. 3. 전류고리에 흐르는 자기장에 관한 식 증명 전류고리에 흐르는 자기장에 관한 식을 Biot-Savart 법칙을 이용하여 증명하고 있습니다. 전류 요소와 거리 사이의...2025.04.25
-
[A+ 실험보고서] 전자기학실험-등전위선2025.01.171. 전자기학 실험 이번 실험을 통해 우리는 여러 가지 형태의 전극에 대해 등전위선을 그려보고, 전기장과 등전위선의 개념을 이해해 보았습니다. 정사각형 전극과 반원형 전극 두 가지를 사용하여 총 두 번의 실험을 진행하였는데, 만족스러운 결과가 나온 두 번째 실험과 달리 첫 번째 실험에선 등전위선이 살짝 왼쪽으로 치우친 결과를 얻을 수 있었습니다. 이에 대한 원인과 해결방안을 고안해 보았습니다. 2. 등전위선 전위차를 가진 두 전극 사이에는 항상 전기장이 존재하며, 같은 전위를 갖는 점들을 연결하면 3차원에서는 등전위면을, 2차원에서...2025.01.17
-
수학 주제 탐구 보고서 - 맥스웰 방정식2025.01.181. 미분방정식 미분방정식과 맥스웰 방정식에 대해 학습하였습니다. 맥스웰 방정식은 전기장과 자기장의 거동과 하전 입자와의 상호작용을 설명하는 4개의 편미분 방정식으로 이루어져 있습니다. 맥스웰 방정식을 이해하려면 기본적인 벡터 미적분학과 전자기학의 기초 개념에 대한 이해가 필요합니다. 이 방정식은 고전 전자기학의 기초를 형성하며 전자기파의 생성, 전기회로의 동작, 전자기장과 물질의 상호작용을 비롯한 다양한 전자기 현상을 설명하는 데 널리 사용됩니다. 2. 맥스웰 방정식 맥스웰 방정식은 전기장과 자기장의 거동과 하전 입자와의 상호작용...2025.01.18
-
화학혁명과 원자론의 등장, 광학의 발전, 전자기학의 성립, 열 기관의 발전과 열역학의 성립, 19세기 기술의 발전2025.04.271. 화학혁명과 원자론의 등장 화학이란 자연과학의 한 분야로 물질의 성질과 조성, 구조와 그 변화를 다루는 학문이다. 고대부터 원자론을 주장하는 학자들이 있었으며, 이집트와 중국에서는 연금술과 연단술이 발전하였다. 18세기에는 플로지스톤설과 산소이론이 등장하며 화학 혁명이 일어났고, 19세기에는 돌턴의 원자설과 멘델레예프의 주기율표가 등장하였다. 20세기에는 화학 분야에서 비약적인 발전이 있었다. 2. 광학의 발전 빛에 대한 논쟁은 고대부터 존재했으며, 아리스토텔레스, 스넬, 데카르트, 뉴턴 등 많은 학자들이 빛의 본질과 속도, 굴...2025.04.27
-
전류고리가 만드는 자기장과 Biot-Savart법칙의 적용2025.04.251. 전류고리와 자기쌍극자 전류고리가 외부 자기장 안에 놓여있을 때 자기쌍극자 모멘트 벡터와 자기장 벡터의 곱에 의한 힘이 작용합니다. 자기 쌍극자모멘트의 벡터 방향은 S극 → N극이며, 자기쌍극자모멘트의 크기는 도선을 감은 횟수와 전류의 세기 그리고 단면적을 곱한 값으로 표현됩니다. 2. 전류고리에 의한 자기장 전류고리는 자기쌍극자로 볼 수 있으며, 자기장 벡터의 흐름이 일방적(비대칭성)입니다. Ampere의 법칙을 적용할 수 없고 Biot-Savart 법칙을 적용해야 합니다. 하나의 원형 고리가 수직 중심축 위의 한 점에 만드는...2025.04.25
-
솔레노이드와 토로이드에 대한 정리2025.04.251. Solenoid 솔레노이드는 촘촘히 감긴 코일 도선에 흐르는 전류가 만드는 자기장입니다. 솔레노이드 내부의 자기장은 균일하며 솔레노이드 축과 평행합니다. 이상적인 솔레노이드의 경우 외부 자기장은 거의 0에 수렴하며, 솔레노이드 내부 자기장의 방향은 오른손 규칙으로 정할 수 있습니다. 솔레노이드 내부 자기장의 크기는 Ampere의 법칙을 이용하여 계산할 수 있습니다. 2. Toroid 토로이드는 솔레노이드를 구부려 양 끝을 붙인 속이 비어 있는 팔찌 모양의 도선입니다. 토로이드 내부에 생기는 자기장은 Ampere의 법칙과 팔찌의...2025.04.25
-
패러데이의 전자기 유도법칙 결과 레포트2025.05.071. 패러데이의 전자기 유도법칙 이 실험은 패러데이의 전자기 유도법칙을 확인하기 위해 수행되었습니다. 실험에서는 자기장의 변화에 따른 유도기전력을 측정하고, 이론값과 비교하여 패러데이 법칙의 성립을 확인하였습니다. 또한 렌츠의 법칙을 통해 유도전류의 방향을 확인하였습니다. 마찰과 열에 의한 에너지 손실도 분석하였습니다. 2. 자기 다발과 패러데이 법칙 자기 다발은 자기장의 표면을 스치지 않고 뚫고 지나가는 성분을 나타내며, 자기장과 면적 벡터의 스칼라 곱으로 구할 수 있습니다. 패러데이 법칙은 자기 다발의 시간 변화율과 유도기전력의...2025.05.07