
총 40개
-
다양한 사회문제나 경영활동 중에 수집되는 자료의 확률분포 특성 분석2025.01.231. 확률분포 확률분포는 확률변수가 어떤 값을 가질지에 대한 확률을 나타내는 개념입니다. 이산확률분포와 연속확률분포가 있으며, 대표적인 확률분포에는 이항분포, 푸아송 분포, 정규분포, 지수분포, 로그정규분포 등이 있습니다. 이러한 확률분포는 각각의 특성과 수학적 성질을 가지고 있어, 실제 데이터 분석 시 적절한 확률분포를 선택하는 것이 중요합니다. 2. 자료 수집 방법과 분석 다양한 자료 수집 방법(조사, 실험, 설문조사, 데이터베이스 활용 등)이 있으며, 각각의 장단점이 있습니다. 자료를 수집하는 방법은 분석 결과와 의사 결정에 ...2025.01.23
-
이산확률분포: 이항분포, 포아송분포, 초기하분포의 특징 및 예시2025.05.091. 이산확률분포 확률분포는 가능한 모든 확률변수와 이것이 일어날 확률을 나타낸 것을 말한다. 이산확률분포는 확률변수 X가 가질 수 있는 값이 유한 집합이거나 가산집합일때 확률변수 X에 대응하는 확률분포이다. 즉, 확률변수 X가 1,2,3,4, … 이나 2,4,6,8,… 등과 같이 하나씩 셀 수 있는 값을 취하는 것을 말한다. 2. 이항분포 이항분포는 연속되는 n번의 독립적 시행에서 각각의 시행의 확률이 p를 가질 때의 분포이며, 이러한 시행을 베르누이 시행이라 말할 수 있다. 이항분포는 시행횟수(n)이 고정되어 있고, 각 시행에서...2025.05.09
-
[경영통계학]4주-5주 강의를 통해 확률변수와 겹합확률분포, 확률분포 대해 학습했습니다.2025.05.051. 이산확률분포 이산확률분포(discrete probability distribution)란 셀 수 있는 확률변수와 각 확률변수에 따른 확률의 분포를 말한다. 이러한 이산확률분포에는 베르누이 분포, 이항 분포, 초기하 분포, 포아송 분포 등이 있다. 2. 연속확률분포 연속확률분포(continuous probability distribution)란 확률변수가 가질 수 있는 값의 개수를 셀 수 없는 연속확률변수의 확률분포를 말한다. 이러한 연속확률분포에는 균등 분포, 지수 분포, 감마 분포 등이 있다. 3. 이산확률분포와 연속확률분포...2025.05.05
-
이산확률분포의 특징 비교2025.01.031. 이산확률분포 이산확률분포는 확률변수가 가질 수 있는 값이 특정 제한된 개수로 구성되는 확률분포입니다. 이산확률분포에는 이항분포, 포아송분포, 초기하분포 등이 있습니다. 이항분포는 성공의 확률이 p인 베르누이 시행을 독립적으로 n회 반복할 때 성공의 횟수를 확률변수로 하는 분포입니다. 초기하분포는 연속적으로 어떤 시행이 일어나지만 서로 독립이 아닌 경우에 나타나는 분포로, 유한한 모집단에서 비복원추출할 때 얻게 되는 분포입니다. 포아송분포는 단위 시간 안에 어떤 사건이 몇 번 발생한 것인지를 표현하는 이산확률분포입니다. 1. 이...2025.01.03
-
이산확률분포의 유형과 특징2025.01.041. 이산확률분포 이산확률분포는 확률변수가 정수 값을 가지는 확률분포를 말합니다. 이항분포, 포아송분포, 초기하분포 등이 대표적인 이산확률분포의 유형입니다. 이들 분포는 각각 독립시행, 단위시간 내 사건 발생 횟수, 비복원추출 등의 특징을 가지고 있습니다. 2. 이항분포 이항분포는 n번의 독립적인 베르누이 시행에서 성공 확률이 p인 경우의 확률분포입니다. 시행 횟수가 늘어나면 이항분포가 정규분포에 근사해집니다. 이항분포는 페널티킥 성공률 등 두 가지 결과만 있는 실험에 적용할 수 있습니다. 3. 포아송분포 포아송분포는 단위 시간 또...2025.01.04
-
이산확률분포와 연속확률분포의 정의와 차이점2025.01.111. 이산확률분포의 정의와 특징 이산확률분포는 이산형 변수를 다루는 확률분포로, 이산확률변수의 값이 특정한 확률로 발생하는 현상을 모델링하는 데 사용된다. 이산확률분포의 확률질량함수는 확률변수가 특정한 값일 때 그 확률을 나타내며, 누적분포함수는 확률변수가 특정한 값보다 작거나 같은 경우의 확률을 누적해서 나타낸다. 이산확률분포의 예시로는 이항분포, 포아송분포, 기하분포 등이 있다. 2. 연속확률분포의 정의와 특징 연속확률분포는 이산확률분포와는 달리 연속적인 확률 변수에서 발생하는 확률을 나타내는데 사용된다. 이를 위해 확률밀도함수...2025.01.11
-
푸아송 분포 유도 및 특징2025.01.141. 푸아송 분포 푸아송 분포는 거의 일어나지 않는 사건에 대한 분포로 적절합니다. n = 1000000, p = 0.00001 인 경우 이항분포로 계산하기 어려워 푸아송 분포를 사용할 수 있습니다. 푸아송 분포는 수많은 사건 중 특정한 사건이 발생할 확률이 매우 적은 경우에 사용되며, 예시로 단위 길이당 DNA 가닥의 돌연변이 수, 특정 지역에서 일어나는 교통사고 건수 등이 있습니다. 2. 푸아송 분포의 유도 푸아송 분포는 특정 지역에서 하루에 일어나는 교통사고의 평균 횟수 λ = 5일 때, 교통사고가 하루에 7번 일어날 확률을 ...2025.01.14
-
고등학교 확률과 통계 교수학습계획 및 평가계획서 예시2025.01.151. 경우의 수 순열과 조합에 대한 개념을 이해하고 다양한 문제를 해결할 수 있다. 이항정리를 이해하고 이를 이용하여 문제를 해결할 수 있다. 2. 확률 통계적 확률과 수학적 확률의 차이를 이해하고 확률의 기본 성질을 이용해 확률을 구할 수 있다. 확률의 덧셈정리와 여사건의 확률을 이해하고 활용할 수 있다. 조건부확률의 의미를 이해하고 구할 수 있으며, 사건의 독립과 종속을 이해하고 확률의 곱셈정리를 활용할 수 있다. 3. 통계 확률변수와 확률분포의 뜻을 알고 이산확률변수의 기댓값과 표준편차를 구할 수 있다. 이항분포의 뜻을 알고 ...2025.01.15
-
고등학교 확률과 통계 평가계획서2025.01.161. 경우의 수 원순열, 중복순열, 같은 것이 있는 순열, 중복조합, 이항정리를 이해하고, 주어진 조건 및 정보를 파악하여 순열과 조합의 수를 구하고 그 과정을 논리적으로 설명할 수 있다. 경우의 수에 대한 종합적인 이해를 바탕으로 다양한 문제를 자기주도적으로 해결할 수 있다. 2. 확률 통계적 확률과 수학적 확률의 관계, 여사건의 확률, 조건부 확률, 사건의 독립과 종속, 확률의 덧셈정리와 곱셈정리의 의미를 이해하고 설명할 수 있다. 확률에 대한 종합적인 이해를 바탕으로 여러 가지 문제를 자기주도적으로 해결하고 그 과정을 논리적으...2025.01.16
-
이산확률분포와 연속확률분포의 차이점2025.01.171. 이산확률분포 이산확률분포에는 베르누이분포, 이항분포, 초기하분포, 포아송분포 등이 있습니다. 이산 확률분포는 확률변수가 셀 수 있는 유한한 값을 가지며, 각각의 값들 사이에 빈 곳이 있습니다. 주사위를 던지거나 동전을 던지는 행위가 대표적인 이산확률분포의 사례입니다. 2. 연속확률분포 연속확률분포에는 균등분포, 지수분포, 감마분포, 베타분포 등이 있습니다. 연속 확률분포는 확률변수가 무한한 값을 가질 수 있으며, 변수가 정해진 범위 안에서 모든 실수의 값을 가질 수 있습니다. 사람의 키나 물건의 무게가 대표적인 연속확률분포의 ...2025.01.17