총 50개
-
[물리화학실험] 고체의 용해도 결과보고서2025.05.141. 고체의 용해도 이 실험은 온도변화에 따른 옥살산의 용해도 변화를 측정해 포화용액에서의 미분용해열을 계산하기 위해 실험 과정에서 적정을 이용한 용해도 결정방법을 익히고 Van't Hoff Equation 에 대해 알고 최종적으로 미분 용해열을 계산해 보는 것이 목표이다. 실험 결과를 통해 Van't Hoff Equation 를 구하였을 때 y=-2328.1x+7.0557 의 식을 얻게 되었고, 이때의 기울기 2328.1은 미분 용해열의 값으로 계산하였을 때 44.576kJ/mol이 나왔다. 1. 고체의 용해도 고체의 용해도는 물...2025.05.14
-
[화학공학실험] 증기압 측정 실험 (해당 과목 A+)2025.05.101. 증기압 측정 실험 이 실험은 여러 가지 물질의 증기압 및 온도에 따른 증기압 변화를 측정하고, 증기압 곡선을 그려봄으로써 증기압 변화 관계를 이해하는 것을 목적으로 합니다. 실험에서는 정적 방법, 동적 방법, 기체 포화 증기 방법 등 다양한 증기압 측정 방법을 사용하였으며, 온도에 따른 증기압 변화를 관찰하고 이론값과 비교하였습니다. 실험 결과에서는 온도가 높아질수록 증기압이 증가하는 경향을 확인할 수 있었으며, 이론값과 실험값 간의 오차 원인을 분석하였습니다. 1. 증기압 측정 실험 증기압 측정 실험은 물질의 상태 변화와 관...2025.05.10
-
연세대(미래) 일반물리학및실험 10. 열의 일당량 레포트2025.05.111. 열의 일당량 이 실험에서는 역학적인 일과 열에너지 사이의 등가성을 이해하고, 에너지 보존법칙에 의한 줄-칼로리의 관계식, 열의 일당량을 측정하는 것을 목적으로 한다. 실험 장치를 통해 역학적인 일을 마찰열로 직접 변환시켜 일과 열 사이의 관계를 알아보고, 최종적으로 수행된 일의 양과 실린더 내부로 유입된 열에너지의 양 사이의 비가 열의 일당량이 되는 것을 확인한다. 2. 에너지 보존 원리 열과 일이 서로 변환될 수 있으며 동등하다는 사실의 발견은 에너지 보존 원리를 확립하는 데 가장 중심적인 특징이다. 1798년 Bavaria...2025.05.11
-
발열 반응 실험 최종 보고서2025.05.131. 발열 반응 발열 반응은 화학 반응 과정에서 반응물질이 생성물질보다 더 많은 에너지를 함유하고 있어 그 차이만큼의 에너지가 외부로 방출되는 현상을 말한다. 이때 방출되는 에너지의 대부분이 열에너지의 형태를 띠기 때문에 주변의 온도가 올라가게 된다. 발열 반응의 대표적인 예로는 금속의 산화, 연료의 연소, 중화 반응 등이 있다. 2. 철 산화 반응 철가루의 산화 반응에서는 철과 산소가 반응물질이며 산화철이 생성물질이다. 철과 산소가 가지고 있는 에너지의 합이 산화철이 가지고 있는 에너지보다 크기 때문에 그 차이만큼의 에너지가 방출...2025.05.13
-
식물의 호흡에 따른 온도 변화 분석2025.01.041. 식물의 호흡 식물도 동물과 마찬가지로 호흡을 통해 에너지를 얻고 생명을 유지한다. 이 과정은 미토콘드리아에서 일어나며 기공을 통해 산소와 이산화탄소를 교환한다. 식물의 호흡은 낮과 밤에 따라 차이가 있는데, 낮에는 광합성이 우세하여 호흡량이 상대적으로 적고 밤에는 호흡만 일어난다. 발아된 콩은 광합성을 할 수 없고 유기호흡만을 하게 된다. 호흡량은 소모된 산소의 양이나 생성된 이산화탄소의 양을 측정하여 확인할 수 있다. 2. 온도에 따른 식물 호흡량 측정 이번 실험에서는 온도에 따른 식물의 호흡량을 이산화탄소 생성량을 통해 측...2025.01.04
-
수원대학교 A+ 화학및실험2 르샤틀리에 원리 결과레포트2025.01.031. 르샤틀리에 원리 르샤틀리에 원리는 화학 평형 상태의 화학계에서 농도, 온도, 부피, 부분 압력 등이 변화할 때, 화학 평형은 변화를 가능한 한 상쇄시키는 방향으로 움직여 화학 평형 상태를 형성한다. 따라서 우리는 르샤틀리에 원리를 통해 화학 평형 상태의 물질의 외부 조건을 변화시켰을 때, 어떤 반응이 일어날지 예측하는 데 사용할 수 있다. 2. 크로뮴산-중크로뮴산 이온의 평형 크로뮴산-중크로뮴산 이온의 평형 실험에서 이론상으로는 Cr2O7^2-(오렌지색) +H2O LRARROW2H+ +2CrO4^2-(노란색) 반응식에서 CrO...2025.01.03
-
열계량2025.11.111. 열계량 열계량은 물질이 흡수하거나 방출하는 열의 양을 측정하는 물리량입니다. 열은 온도 차이에 의해 한 물체에서 다른 물체로 전달되는 에너지이며, 열계량은 칼로리(cal) 또는 줄(J) 단위로 표현됩니다. 열계량은 물질의 질량, 비열, 온도 변화를 이용하여 계산되며, Q=mcΔT 공식으로 나타낼 수 있습니다. 2. 비열 비열은 물질 1g의 온도를 1°C 올리는 데 필요한 열의 양입니다. 물질마다 비열이 다르며, 물의 비열은 약 4.18 J/g°C입니다. 비열이 크면 같은 양의 열을 가해도 온도 변화가 작고, 비열이 작으면 온도...2025.11.11
-
컴퓨터를 사용한 측정, 온도 변화 결과 보고서2025.05.161. 온도 측정 및 분석 실험 1에서 최종 온도까지의 37%에 도달하는 시간 τ는 3.5초이다. 최종 온도까지의 5%에 도달하는 시간은 6.7초로 1.91τ이다. 최종 온도까지의 1%에 도달하는 시간은 9.5초로 2.71τ이다. 도출한 결과가 3τ, 5τ에서 많이 떨어진 값이 나왔으므로 식 (3)의 근사는 만족스럽지 않다. 물과 대기의 온도를 측정할 때 어느 한 값에서 더 이상 값이 변화하지 않고 수렴하는 양상을 보이면 그것을 평형점에 도달했다고 한다. 따라서 물과 대기의 온도가 평형점에 도달하는 시간을 측정하여 서로 비교한다. 이...2025.05.16
-
온도 변화 실험 결과 분석 및 냉각 현상 검증2025.11.121. 시간상수(τ)와 냉각 곡선 실험에서 측정한 최종 온도까지의 도달 시간을 시간상수 τ의 배수와 비교하여 냉각 현상을 분석했다. 5% 이내 도달 시간 3.6s는 3τ(6.9s)와 3.3s의 오차를 보였고, 1% 이내 도달 시간 3.8s는 5τ(11.5s)와 7.7s의 오차를 나타냈다. 이는 물체의 냉각 현상이 복잡하며 이론적 근사식과 실제 측정값 사이에 유의미한 차이가 존재함을 보여준다. 2. 근사식(식 3)의 타당성 검토 실험 결과를 바탕으로 식 (3)의 근사 타당성을 평가했다. 계산값과 실제 측정값 사이의 큰 차이(5% 기준 ...2025.11.12
-
미분방정식을 이용해 생체시계의 비밀 해결2025.05.041. 생체시계 일반적으로 온도가 오르게 되면 다른 생체반응은 빨라지는데, 이와는 대조적으로 생체시계의 반응은 환경이나 온도와는 상관없이 일정한 리듬을 갖고 있다. 생체시계로 인한 신체 리듬이 어떻게 모든 사람에게 공통적으로 나타나는지를 규명하기 위해 전 세계의 과학자들은 생체시계 원리를 밝히려 노력했다. KAIST 수리과학과의 김재경 교수가 미분방정식을 이용한 수학적 모델링을 통해 온도 변화에도 불구하고 생체시계의 속도를 유지하는 원리를 발견했다. 2. 피리어드2 단백질 KAIST 연구진은 이 같은 이유를 피리어드2라는 핵심 단백질...2025.05.04