
총 14개
-
움직이는 세계, 미적분2025.01.041. 미적분학의 역사와 발전 미적분학의 초기 아이디어는 고대 그리스와 바벨론 문화에서 기원이 되었으며, 아르키메데스, 뉴턴, 오일러, 라그랑주, 라플라스 등의 수학자들에 의해 발전되었다. 뉴턴의 미적분학은 물리학에 큰 영향을 미쳤으며, 현대 수학의 기반이 되는 중요한 분야 중 하나이다. 2. 미분과 적분의 개념 미분은 함수의 순간 변화율을 나타내는 개념으로, 함수의 도함수를 계산하여 변화율, 최댓값/최솟값, 기울기 등을 분석할 수 있다. 적분은 함수의 면적 또는 누적된 변화를 나타내는 개념으로, 부정적분을 통해 함수를 얻을 수 있다...2025.01.04
-
미술+수학 교과융합 세특 PPT+대본(2500자)+느낀점(600자) (미술 기법과 수학 교과 간 연관성 짓기)2025.01.291. 젠탱글 젠탱글은 선(Zen)과 얽힌 것(tangle)의 합성어로, 흰 종이에 패턴을 반복적으로 그리는 예술 활동이다. 기본적으로 흰 바탕과 검은 선으로 구성되지만 다양한 색을 사용할 수 있다. 젠탱글은 집중력을 요구하고 스트레스 해소에 도움이 되어 미술 치료에도 활용된다. 2. 격자무늬 우리나라 전통 건축물의 창과 문에 사용된 격자무늬는 가로와 세로가 일정한 간격으로 직각을 이루며 교차하는 패턴이다. 이러한 격자무늬는 젠탱글의 반복적인 패턴과 유사성을 보인다. 3. 겔로시아 곱셈법 겔로시아 곱셈법은 격자무늬를 이용한 곱셈 방식...2025.01.29
-
수학의 역사: 3차방정식 해법 논쟁2025.05.081. 삼차방정식의 해법 발견 수학자 카르다노와 타르탈리아 사이의 논쟁은 삼차방정식의 일반적 해법에 관한 것이었다. 일차방정식과 이차방정식의 해법은 이미 고대 시대부터 알려져 실생활에 활용되고 있었지만 삼차방정식의 해법은 16세기 초에 이르러서야 발견되었다. 삼차방정식의 해법을 가장 먼저 발견한 것은 이탈리아 볼로냐의 수학자 델 페로라고도 알려져있으나, 비슷한 시기에 타르탈리아라는 수학자도 3차방정식의 해법을 가장 먼저 발견했다고 주장했다. 최종적으로 삼차방정식의 해법은 '카르다노의 공식'이라는 이름으로 알려져있다. 2. 카르다노와 ...2025.05.08
-
R & E 활동 보고서 <자연이 품은 수의 나열과 비율 연구>2025.05.081. 피보나치 수(열) 피보나치 수열은 자연에서 많이 발견되는 수열로, 처음 두 항이 1이고 이후 항은 바로 앞의 두 항의 합으로 이루어진다. 이 수열은 수학, 과학, 자연 등 다양한 분야에서 중요한 의미를 가지고 있다. 2. 황금비 황금비는 약 1.618의 비율로, 자연과 예술 등 다양한 분야에서 발견되는 중요한 수학적 개념이다. 황금비는 자연스러운 균형과 아름다움을 나타내는 것으로 여겨지며, 많은 학자들이 이에 대해 연구해왔다. 3. 자연 속 수학 자연계에는 피보나치 수열, 황금비 등 다양한 수학적 규칙성이 숨어있다. 이러한 규...2025.05.08