
총 14개
-
움직이는 세계, 미적분2025.01.041. 미적분학의 역사와 발전 미적분학의 초기 아이디어는 고대 그리스와 바벨론 문화에서 기원이 되었으며, 아르키메데스, 뉴턴, 오일러, 라그랑주, 라플라스 등의 수학자들에 의해 발전되었다. 뉴턴의 미적분학은 물리학에 큰 영향을 미쳤으며, 현대 수학의 기반이 되는 중요한 분야 중 하나이다. 2. 미분과 적분의 개념 미분은 함수의 순간 변화율을 나타내는 개념으로, 함수의 도함수를 계산하여 변화율, 최댓값/최솟값, 기울기 등을 분석할 수 있다. 적분은 함수의 면적 또는 누적된 변화를 나타내는 개념으로, 부정적분을 통해 함수를 얻을 수 있다...2025.01.04
-
고등학교 미적분 과목별 세부능력 및 특기 사항(과세특) 예시2025.01.171. 등비수열 기하학적 대상이 일정한 비율로 작아지는 반복되는 패턴을 나타내고 있을 때, 이 패턴이 등비수열임을 파악한 후 등비급수의 성질을 이용하여 대상들의 합을 구함. 등비수열의 수렴, 발산을 판별하는 수업에 흥미를 보이고 모둠활동에 참여하여 등비수열의 수렴 발산을 추측해 봄. 등비수열의 수렴, 발산 조건을 이해한 후 간단한 형태의 등비수열의 수렴, 발산을 판정하는 데 성공함. 등비수열의 극한값 구하기 수업에서 등비수열을 포함하는 다양한 수열들의 수렴 발산을 조사하고 극한값을 구하는 활동에 적극적으로 참여함. 등비수열의 공비가 ...2025.01.17
-
고등학교 확률과 통계 과목별 세부능력 및 특기 사항(과세특) 예시2025.01.221. 표준정규분포 표준정규분포 그래프를 그리고 이를 이용하여 구하고자 하는 확률을 구할 수 있고, 정규분포와 표준정규분포의 공통점과 차이점을 설명할 수 있음. 2. 이항분포 실생활에서 이항분포를 따르는 상황에는 어떤 것이 있는지 이해하고 정규분포로 근사시켜 상황에 맞는 답을 도출함. 3. 확률과 통계의 실생활 활용 확률과 통계 기법을 통해 사용자 이동 패턴을 분석하고 최적의 경로를 설계하였고, 스마트홈 및 리모델링 사례를 통해 적용 가능성을 보여줌. 이항분포가 마케팅, 예약 및 고객 행동 예측에 활용되는 방법을 소개함. 베이즈 정리...2025.01.22
-
수학의 역사: 3차방정식 해법 논쟁2025.05.081. 삼차방정식의 해법 발견 수학자 카르다노와 타르탈리아 사이의 논쟁은 삼차방정식의 일반적 해법에 관한 것이었다. 일차방정식과 이차방정식의 해법은 이미 고대 시대부터 알려져 실생활에 활용되고 있었지만 삼차방정식의 해법은 16세기 초에 이르러서야 발견되었다. 삼차방정식의 해법을 가장 먼저 발견한 것은 이탈리아 볼로냐의 수학자 델 페로라고도 알려져있으나, 비슷한 시기에 타르탈리아라는 수학자도 3차방정식의 해법을 가장 먼저 발견했다고 주장했다. 최종적으로 삼차방정식의 해법은 '카르다노의 공식'이라는 이름으로 알려져있다. 2. 카르다노와 ...2025.05.08