
총 19개
-
인하대학교 공업수학1_문제풀이2025.05.101. 방사성 물질 반감기 살아있는 사람의 인체 속에는 살아있을 때는 물질의 변화율이 없지만 사망하면 탄소로 변화가 시작되는 반감기가 1,000년인 방사성물질 A를 가지고 있다. 사망자를 발견시 방사성 물질 A의 5분의 1이 탄소로 변했다면 이 사망자는 사망시부터 얼마의 시간이 지났는지 계산하시오. 2. 미분방정식 일반해 sin'의 일반해를 구하시오. 또한 ′의 일반해를 구하시오. 그리고 sin sin cos cos를 만족하는 일반해를 구하시오. 3. 초기값 문제 초기값 문제 를 만족하는 해를 구하시오. 또한 초기값 문제 ′를 만족하...2025.05.10
-
LC진동에 대해서2025.05.011. LC진동의 정성적 분석 축전기의 전기장과 유도기의 자기장이 진동하는 현상을 전자기 진동이라고 한다. 회로 내 전자기 진동이 일어날 때 회로가 진동한다고 한다. 진동하는 LC회로에서 에너지는 주기적으로 축전기의 전기장과 유도기의 자기장 사이를 왕복한다. 저항이 없는 이상적인 LC회로에서는 축전기의 전기장과 유도기의 자기장 사이에서 발생하는 에너지 전환 이외에 다른 에너지 전환은 없으며, 에너지가 보존되기 때문에 진동은 무한히 계속될 것이다. 2. LC진동의 정량적 분석 진동하는 LC회로의 전체 에너지는 유도기의 자기장에 저장된 ...2025.05.01
-
좌굴해석 실험레포트2025.01.241. 좌굴하중 예측 실험 목적은 방정식을 이용하여 좌굴하중을 예상하고, 실험 장치를 통해 실재로 기둥에 하중을 가하여 기둥의 길이 및 기둥의 지지 형태에 따라 좌굴에 미치는 영향을 비교하는 것입니다. 이론적 배경에서는 핀-핀 지지된 기둥의 자유물체도를 바탕으로 축 하중과 굽힘 모멘트에 대한 미분방정식을 유도하고, 이를 통해 좌굴하중을 계산하는 과정을 설명하고 있습니다. 1. 좌굴하중 예측 좌굴하중 예측은 구조물의 안전성 평가에 매우 중요한 요소입니다. 정확한 좌굴하중 예측을 위해서는 구조물의 기하학적 형상, 재료 특성, 경계 조건 ...2025.01.24
-
[요약문] <공학수학> 1. 저계, 고계 미분방정식이론2025.01.131. 미분방정식 미분방정식의 용어와 정의, 1계 상미분 방정식의 해법, 완전 미분방정식과 불완전 미분방정식의 구분 및 해법, 특수한 1계 미분방정식(변수분리형, 동차형, 선형)의 해법 등을 설명하고 있습니다. 2. 고계 미분방정식 n계 제차 미분방정식과 n계 비제차 미분방정식의 정의와 해법, 실 계수 제차 미분방정식과 Cauchy-Euler 방정식의 해법 등을 설명하고 있습니다. 3. 2계 비선형 미분방정식 독립변수나 종속변수가 결여된 2계 비선형 미분방정식의 해법을 설명하고 있습니다. 1. 미분방정식 미분방정식은 수학의 중요한 분...2025.01.13
-
수학 주제 탐구 보고서 - 맥스웰 방정식2025.01.181. 미분방정식 미분방정식과 맥스웰 방정식에 대해 학습하였습니다. 맥스웰 방정식은 전기장과 자기장의 거동과 하전 입자와의 상호작용을 설명하는 4개의 편미분 방정식으로 이루어져 있습니다. 맥스웰 방정식을 이해하려면 기본적인 벡터 미적분학과 전자기학의 기초 개념에 대한 이해가 필요합니다. 이 방정식은 고전 전자기학의 기초를 형성하며 전자기파의 생성, 전기회로의 동작, 전자기장과 물질의 상호작용을 비롯한 다양한 전자기 현상을 설명하는 데 널리 사용됩니다. 2. 맥스웰 방정식 맥스웰 방정식은 전기장과 자기장의 거동과 하전 입자와의 상호작용...2025.01.18
-
RL회로 내 유도 법칙 적용2025.04.281. RL회로에서의 유도전류의 흐름 RL회로에서 기전력을 연결하면 축전기의 전하가 지수함수적 형태로 표현됩니다. 유도기(L)가 있을 경우 전류가 서서히 증가하거나 감소하며, 유도기의 존재로 인해 전류는 평형값인 xi/R보다 작습니다. 시간이 지남에 따라 회로에 흐르는 전류는 xi/R에 수렴합니다. 2. RL회로에서의 고리 규칙 적용 RL회로에서 스위치 S를 a에 연결하면 전류가 시계 방향으로 흐르게 됩니다. 전류가 저항기(R)를 통과할 때 -iR의 퍼텐셜 변화가 생기며, 유도기(L)를 지날 경우 자체 유도기전력(xi_L)이 생겨 전...2025.04.28
-
SIR모델과 감염재생산지수(R)2025.01.131. SIR 모델 SIR 모델은 감염병 유행 정도를 예측할 때 사용되는 모델로, 전체 인구를 아직 감염되지 않은 집단(S), 감염된 집단(I), 감염됐다가 회복된 집단(R)으로 나누어 각 집단의 수가 시간에 따라 어떻게 변하는지 분석한다. SIR 모델은 간단한 미분방정식 형태로 표현되며, 이를 통해 감염재생산지수(R)도 계산할 수 있다. 2. 감염재생산지수(R) 감염재생산지수(R)는 확진자 1명이 몇 명을 감염시키는지를 나타내는 수치로, 1 이하이면 유행이 억제되고 1 이상이면 유행이 확산된다. R은 SIR 모델을 통해 계산할 수 ...2025.01.13
-
공학수학 - 미분방정식2025.01.131. 미분방정식의 용어 정의 미분방정식의 용어를 정의하고 설명하였습니다. 미분방정식은 상미분방정식(ODE), 편미분방정식(PDE), 계수, 제차 방정식, 선형 방정식 등으로 구분됩니다. 2. 1계 상미분 방정식 1계 상미분 방정식의 정의와 해법을 설명하였습니다. 완전 미분방정식과 불완전 미분방정식, 변수분리형 미분방정식, 선형 미분방정식 등의 해법을 다루었습니다. 3. 특수한 1계 미분방정식 베르누이, 리카티, 클레로 방정식 등 특수한 1계 미분방정식의 해법을 설명하였습니다. 4. n계 제차 미분방정식 n계 제차 미분방정식의 정의와...2025.01.13
-
로지스틱 함수를 이용한 코로나19 누적 확진자 추이 그래프 분석과 SIR 모델에 적용된 수학적 원리2025.01.211. 전염병 예측 모델 SIR 모델은 전염병을 예측하는 대표적인 모델로, 취약자(S), 감염자(I), 회복자(R)의 시간에 따른 변화를 미분 방정식으로 표현한다. 이를 통해 전염병의 확산 추이를 예측할 수 있다. 2. 로지스틱 방정식 로지스틱 방정식은 개체군 성장의 단순한 모델로 고안된 미분 방정식이다. 이 방정식은 개체군의 크기가 점점 빠르게 증가하다가 변곡점을 지나 완만하게 증가하며 특정 값에 수렴하는 특성을 보인다. 3. 코로나19 확진자 추이 분석 코로나19 확진자 추이 그래프를 로지스틱 함수를 이용하여 분석하면, 변곡점과 ...2025.01.21
-
미적분, 화학 연계 발표자료 - 반감기와 미적분2025.01.211. 반감기 반감기란 어떠한 물질의 양이 초기값의 절반이 되는데 걸리는 시간을 말합니다. 화학반응 속도를 구하는 데 중요한 요소이며, 방사능 원소들의 반감기와 화학반응에서의 반감기(농도)가 있습니다. 붕괴 상수의 차이에 따라 반감기가 달라집니다. 2. 미분 방정식 1개의 입자가 단위시간당 반응할 확률이 K(붕괴상수)일 때, N개의 입자에서 단위시간당 반응할 입자수는 NK로 나타낼 수 있습니다. 이를 통해 미분방정식을 유도할 수 있으며, N에 대한 관계식을 통해 반감기를 구할 수 있습니다. 1. 반감기 반감기는 방사성 물질이나 약물 ...2025.01.21