총 15개
-
머신러닝 2024년 2학기 방송통신대 출석수업과제물 과제 슬라이드 1~7의 코드 및 설명을 참조하여 신경망 구성 및 test accuracy 출력2025.01.261. Fashion MNIST 데이터셋 Fashion MNIST 데이터셋은 옷 이미지 데이터셋으로, 10개의 클래스(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot)로 구성되어 있습니다. 이 데이터셋을 사용하여 신경망 모델을 구축하고 학습을 진행합니다. 2. 데이터 전처리 데이터 시각화를 통해 이미지 데이터를 확인하고, 픽셀 값을 0~1 사이의 실수로 정규화하여 모델 학습에 사용합니다. 이미지 데이터를 1차원 벡터로 변환하는 과정...2025.01.26
-
자동차 엔진 센서 데이터를 이용한 AI 자동 검사 모델2025.11.131. CNN 딥러닝 모델 Convolutional Neural Network(CNN) 모델을 자동차 엔진 센서 데이터 분석에 적용하여 97.35%의 높은 정확도를 달성했습니다. CNN은 인접한 센서 값들 간의 패턴을 효과적으로 학습하며, kernel size 3으로 설정하여 최적의 성능을 보였습니다. 정밀도 97.04%, 재현율 97.5%, F1 스코어 97.27%, AUC 99.43%의 우수한 평가지표를 기록했으며, 과적합 없이 400 epoch 동안 안정적으로 학습되었습니다. 2. 엔진 상태 예측 및 자동 검사 Ford 자동차 ...2025.11.13
-
미래사회와 소프트웨어 과제2025.01.291. 데이터 분석의 역사 데이터는 인류 역사 속에서 오래전부터 분석되어 왔다. 이집트의 토지조사, 바빌로니아의 진흙판 숫자, 중국의 인구조사, 그리스의 조세조사, 민수기의 인구조사, 로마의 생명표 등 다양한 데이터 분석 사례가 있었다. 우리나라에서도 조선시대에 호적 제도를 통해 인구통계를 내었다. 이처럼 통계학은 과거부터 국가 통치를 위해 사용되어 왔다. 2. 데이터의 진화 산업혁명 이후 데이터는 국가 데이터에서 민간 데이터로 진화했다. 데이터 저장 기술의 발전으로 소셜 네트워크 서비스 데이터가 등장했고, 데이터베이스 시대가 열렸다...2025.01.29
-
데이터 사이언티스트 인터뷰 준비2025.01.201. 데이터 전처리 데이터셋에 존재할 수 있는 결측값과 이상치를 처리하는 것이 중요하다. 결측값은 평균, 중앙값 등으로 대체하거나 제거할 수 있으며, 이상치는 상자 그림이나 Z-점수를 사용해 식별하고 제거하거나 대체할 수 있다. 또한 데이터의 스케일을 맞추기 위해 정규화 작업이 필요하다. 2. 머신러닝 모델 과적합 방지 과적합을 방지하기 위해 교차 검증, 정규화 기법(L1, L2), 조기 종료 등의 방법을 사용할 수 있다. 교차 검증을 통해 데이터를 최대한 활용하고 모델의 일반화 성능을 평가할 수 있으며, 정규화 기법은 모델의 복잡...2025.01.20
-
계절학기 수강신청 추천 프로그램 개발2025.11.171. 데이터 전처리 및 크롤링 BeautifulSoup과 Pandas 라이브러리를 활용하여 웹페이지에서 계절학기 교과목, 학사일정, 공지사항 데이터를 수집하고 정제했습니다. urllib를 이용한 정적 웹페이지 크롤링, HTML 파싱을 통해 필요한 정보를 추출하고, 결측값 처리 및 데이터 가공을 수행했습니다. CSV 형식의 교과목 데이터와 HTML 형식의 학사일정 데이터를 통합하여 분석 가능한 형태로 변환했습니다. 2. 프로그램 알고리즘 및 함수 설계 학생 정보 입력을 통해 전공/일선/교양 구분을 수행하고, 관심 분야 입력에 따라 과...2025.11.17