
총 38개
-
데이터마이닝 ) 나무 형태를 이용한 지식 표현 사례2025.01.031. 의사결정나무 의사결정나무는 예측모형에서 가장 많이 사용되며 의사결정 규칙을 도표화하여 대상 집단을 분류하거나 예측하는 분석 방법입니다. 의사결정나무의 장점은 나무구조에 의해 모형이 표현되어 사용자의 이해가 쉽고, 유용한 예측변수나 비선형성을 자동으로 찾아낼 수 있으며, 선형성이나 정규성, 등분산성과 같은 가정을 필요로 하지 않는 비모수적인 방법이라는 것입니다. 하지만 의사결정나무 모형은 연속형 변수를 비연속적인 값으로 취급하여 분리의 경계점에서 예측오류가 큰 가능성이 있고, 선형성과 주 효과를 가지지 못한다는 단점이 있습니다....2025.01.03
-
데이터마이닝의 정의와 활용 분야2025.01.181. 데이터마이닝의 정의 데이터마이닝은 대규모 데이터 세트에서 통계적이고 수학적인 기법을 활용하여 유용한 정보와 패턴을 추출하는 과정을 말한다. 이는 데이터베이스, 데이터 웨어하우스 또는 다양한 데이터 소스로부터 데이터를 수집하고 분석함으로써 이루어진다. 데이터마이닝은 기계 학습, 통계 분석, 패턴 인식, 인공지능 등의 다양한 분야의 기법과 원칙을 포괄하는 다중 학문적인 접근 방법을 사용한다. 2. 데이터마이닝 활용 분야: 상업 분야 온라인 소매업체는 고객의 구매 이력, 검색 기록, 선호도 등을 분석하여 개별 고객에게 맞춤형 제안을...2025.01.18
-
데이터마이닝의 정의와 활용 분야2025.01.071. 데이터마이닝 정의 및 필요성 데이터마이닝은 대용량의 데이터에서 유용한 지식을 효과적으로 찾아내는 기술로, 기업의 경쟁력 확보에 중요한 역할을 합니다. 데이터마이닝은 통계학, 인공지능, 데이터베이스 등 다양한 분야를 아우르는 융합 분야이며, 비계획적으로 수집된 대용량 데이터를 다루고 일반화와 예측이 중요한 특징을 가지고 있습니다. 2. 데이터마이닝의 활용 분야 데이터마이닝은 데이터베이스 마케팅, 신용평가, 의료 분야 등에서 다양하게 활용되고 있습니다. 데이터베이스 마케팅에서는 타겟 마케팅, 고객 세분화, 이탈 고객 분석 등에 활...2025.01.07
-
방통대 [데이터마이닝] 2024 출석과제물 (30점 만점 인증 / 표지제외 12페이지 분량 / 코드 및 해설 포함)2025.01.251. 모수적 모형 접근법 모수적 모형 접근법은 통계를 사용하여 데이터의 특징과 의미를 해석할 수 있는 분석 모델을 만드는 전통적인 방법입니다. 주로 사용하는 모형으로는 선형 회귀분석, 로지스틱 회귀모형이 있으며 모델 내에서 a 또는 b 같은 모수를 최소제곱법 또는 최대우도추정법을 사용하여 추정합니다. 모수적 모형 접근법으로 만들어진 분석 모델은 원인과 결과에 대한 설명이 용이하다는 장점이 있지만, 분석 모델을 만드는데 사용했던 데이터가 아닌 다른 데이터를 사용할 경우 정확도가 낮아지거나 적용 자체가 불가능할 수 있다는 단점이 있습니...2025.01.25
-
Kernel PCA & Spectral Clustering2025.01.131. Kernel PCA Kernel PCA는 편향이 큰 실세계의 데이터를 분석하는데 어려움이 있고, outlier data에 매우 민감한 linear PCA의 단점을 보완하기 위해 kernel trick을 수행한다. 하지만 분산이 가장 큰 축으로 데이터들을 정사영 시킬 뿐, clustering algorithm을 적용하지는 않는다. 2. Spectral Clustering Spectral Clustering은 군집화를 더 쉽게 하기 위해서 유사도 행렬 A를 통해 데이터들을 변형된 공간에 넣고, 후에 clustering algori...2025.01.13
-
자료에 극단값이 포함된 경우 극단값 처리에 대한 논의2025.01.281. 극단값의 정의와 특성 극단값은 데이터 집합에서 다른 값들과 큰 차이를 보이는 값으로, 일반적으로 데이터 분포의 상하위 1% 또는 3 표준편차를 벗어난 값을 극단값으로 간주한다. 극단값은 오류로 인해 발생하거나 데이터의 본질적 특징을 반영할 수 있다. 2. 극단값이 분석에 미치는 영향 극단값은 평균, 표준편차와 같은 주요 통계값에 큰 영향을 미칠 수 있다. 극단값으로 인해 데이터의 분포가 왜곡되어 정책 결정이나 연구 결과 해석에 오류를 초래할 수 있다. 3. 극단값의 처리 방법 극단값 처리 방법에는 극단값 제거, 다른 값으로 대...2025.01.28
-
베일에 쌓인 기업 - 팔란티어 테크놀로지2025.01.281. 팔란티어 테크놀로지 개요 팔란티어는 2003년 5월에 설립된 미국의 빅 데이터 프로세싱 기업입니다. 주로 공공 정보 분석을 수행하며, 미국 정보기관들을 주요 고객으로 하고 있습니다. 기술적 기반은 PayPal의 사기 탐지 기술을 가져온 것이며, 다양한 데이터 소스를 처리하고 분석하는 능력이 뛰어납니다. 하지만 상대적으로 비용이 높은 편입니다. 2. 팔란티어 테크놀로지 창업자 팔란티어는 PayPal을 매각한 피터 틸이 대학 동창인 알렉스 카프와 스티브 코헨을 영입하여 설립했습니다. 지배구조는 이사회 중심으로 운영되고 있습니다. ...2025.01.28
-
인공지능 시대에 데이터베이스의 필요성 및 중요성2025.01.041. 인공지능 인공지능은 4차 산업혁명의 핵심 요소로, 그동안 인간의 고유 능력이었던 학습, 추론, 지각, 탐색 등의 능력을 인공적인 컴퓨터 기술로 구현한 것을 의미합니다. 인공지능은 사물인터넷, 클라우드 컴퓨팅, 빅데이터와 함께 4차 산업혁명의 주요 기술 및 연구 분야로 자리잡고 있으며, 일상생활과 경제 활동을 지원하는 중요한 기술로 인식되고 있습니다. 2. 데이터베이스의 활용 데이터베이스는 정형화된 데이터를 저장하고 관리하는 시스템으로, 데이터 마이닝을 통해 정보를 추출하고 가공할 수 있습니다. 또한 비/반정형 텍스트 데이터에서...2025.01.04
-
데이터 마이닝의 정의와 활용 사례2025.01.021. 데이터 마이닝의 이해 데이터 마이닝은 대량의 데이터 세트에서 가치 있는 정보와 통찰력을 추출하는 프로세스입니다. 여기에는 통계 분석, 기계 학습, 패턴 인식 등의 기술을 사용하여 데이터 내 숨겨진 패턴, 상관 관계 및 트렌드를 식별하는 것이 포함됩니다. 데이터 마이닝 프로세스에는 데이터 수집, 정리 및 전처리, 탐색, 모델 구축, 평가, 배치 등의 단계가 포함됩니다. 2. 데이터 마이닝의 응용 데이터 마이닝의 주요 애플리케이션 중 하나는 예측 분석입니다. 이를 통해 기업은 고객 수요를 예측하고 재고를 효율적으로 관리할 수 있습...2025.01.02
-
빅 데이터의 의미와 정보기술2025.04.251. 빅 데이터의 의미 빅 데이터는 데이터의 양(Volume), 데이터 생성 속도(Velocity), 형태의 다양성(Variety)이라는 3가지 특성을 가지고 있다. 이러한 빅 데이터는 개인, 단체, 기업, 국가 등에 중요한 자산이 되며 미래 경쟁력을 좌우하는 중요한 자원으로 활용될 것이다. 2. 빅 데이터 분석 기술 빅 데이터 분석 기술에는 기계학습, 데이터마이닝 등이 있다. 기계학습은 컴퓨터가 스스로 학습하여 새로운 규칙을 형성하는 기술이며, 데이터마이닝은 광대한 데이터베이스에서 가치 있는 정보를 찾아내는 기술이다. 이러한 기술...2025.04.25