
총 21개
-
대학수학에서 배우는 수학, 배우고 싶은 수학2025.01.211. 미적분학 미적분학은 변화율과 누적값을 다루는 수학의 기초 분야로, 연속적인 변화를 다루며 극한, 미분, 적분 개념을 중심으로 한다. 물리학, 공학, 경제학 등 거의 모든 과학 분야에서 광범위하게 사용되며, 건축 분야에서는 구조물의 응력 분석, 열 전달 계산, 곡면 설계 등에 활용된다. 2. 선형대수학 선형대수학은 벡터, 행렬, 선형 변환 등을 연구하는 분야로, 다차원 공간에서의 선형 관계를 다루며 연립방정식 해법에 중점을 둔다. 컴퓨터 그래픽스, 기계 학습, 양자 역학 등에서 핵심적인 역할을 하며, 건축 분야에서는 3D 모델링...2025.01.21
-
기하 보고서 (leniscate, 두 초점사이 거리의 곱이 일정할 때)2025.01.151. 렘니스케이트 곡선 책 '원뿔에서 태어난 이차곡선'을 읽으며 이차곡선의 유래 과정에 대해 잘 이해할 수 있었다. 책을 읽으며 갖게된 초점간의 관계에 대한 궁금증을 바탕으로 두 초점사이의 거리의 곱이 일정할 때 그려지는 자취의 방정식이 무한대꼴의 자취를 가진다는 것을 알 수 있었으며 이를 극좌표계를 통해 나타내는 것이 유용함을 알게되었다. 또한 렘니스케이트 곡선이 자율주행에서의 센서나 오일펌프의 설치에 적용되는 것을 알 수 있었다. 1. 렘니스케이트 곡선 렘니스케이트 곡선은 수학 및 물리학 분야에서 매우 중요한 개념입니다. 이 곡...2025.01.15
-
아르키메데스의 수학적 업적2025.01.201. 원주율 계산 아르키메데스는 실진법을 이용하여 원주율 π의 근삿값을 최초로 구했다. 그는 원에 내접하는 정육각형과 외접하는 정육각형의 둘레 길이를 이용하여 π의 값이 3과 3.47 사이에 있다는 것을 밝혀냈다. 이후 변의 개수를 늘려가며 더 정확한 값을 구했고, 최종적으로 π의 값이 3.1416임을 증명했다. 이는 당시 그리스에서 알려진 가장 정확한 원주율 값이었다. 2. 곡선 및 곡면 도형의 넓이와 부피 계산 아르키메데스는 실진법을 사용하여 곡선이나 곡면으로 둘러싸인 도형의 대략적인 넓이와 부피를 구했다. 도형을 같은 두께의 ...2025.01.20
-
아르키메데스의 수학적 업적2025.01.201. 아르키메데스의 수학적 업적 아르키메데스는 기원전 287년 출생한 것으로 추정되며 기원전 212년 2차 포에니 전쟁 중 사망하였다. 그의 거의 모든 논문은 9세기 초와 10세기에 콘스탄티노플에서 양피지 위에 그리스어 소문자로 필사되었다. 그의 주요 업적은 다음과 같다: 1. 천칭을 이용하는 기계적물리적 방법으로 도형을 적분하는 과정을 소개한 '방법'이라는 논문을 남겼다. 그는 도형의 넓이와 부피와 같은 기하학적 성질을 알아내기 위해 천칭의 원리를 이용하였다. 2. 포물선 조각의 넓이, 구의 부피, 구의 겉넓이 등을 구하는 공...2025.01.20
-
기하 정사영 일상생활 창의 리포트2025.01.281. 정사영을 활용한 키 측정 정사영을 활용하여 기계 없이도 키를 측정할 수 있는 방법을 소개했습니다. 입체인 사람의 몸을 벽에 수직으로 부착했다고 가정하고, 그렇게 했을 때 생기는 수직 부분의 길이를 계산하면 그 사람의 키를 측정할 수 있습니다. 이는 3차원 입체도형을 2차원 정사영으로 변환하는 원리를 활용한 것입니다. 2. 정사영을 활용한 시간 측정 조선 시대 과학자 장영실이 개발한 앙부일구에서는 정사영의 원리를 활용하여 시간을 측정할 수 있었습니다. 동쪽에서 떠서 서쪽으로 질 때까지 하루의 햇빛 고도량을 바탕으로 이를 정사영시...2025.01.28
-
러시아 구성주의(Constructivism) 이념의 건축예술에서의 적용 및 현대건축에 미친 영향2025.05.051. 러시아 구성주의 예술 러시아 구성주의는 1910~1920년대 예술혁명을 표방했던 아방가르드 운동의 일부이다. 당시 러시아는 제1차 세계대전과 러시아 혁명 등 사회적으로 대격변을 겪었고, 예술계에서도 이에 상응하는 예술혁명이 일어나게 된다. 러시아 예술가들은 전통적인 미술의 개념과는 반대되는 새로운 양식의 조형예술을 추구하고자 하였다. 이들은 원이나 삼각형, 직사각형과 같은 순수한 모습으로 환원된 조형 요소의 조합을 사용해서 기하학적, 역학적인 미를 추구하였다. 2. 러시아 구성주의 예술의 특징 러시아 구성주의 예술의 특징으로는...2025.05.05
-
타원의 성질을 이용한 체외충격파쇄석술과 벡터를 이용한 원심분리기2025.05.091. 타원의 성질 타원은 평면 위 두 정점으로부터의 거리의 합이 일정한 점의 자취를 말한다. 타원의 초점, 축, 중심, 꼭짓점 등의 성질을 설명하였다. 타원의 거울 면에서 한 초점에서 빛과 전파를 쏘게 되면 타원면에 반사된 후 다른 초점에 도달한다는 특성을 설명하였다. 2. 체외충격파쇄석술 요로 결석 치료를 위해 사용되는 체외충격파쇄석술은 타원의 성질을 이용한다. 한 초점에 결석이 위치하도록 하고 다른 초점에서 충격파를 발사하면 타원의 반사 성질에 의해 결석에 충격을 주어 잘게 부순다. 3. 원심분리기의 원리 원심분리기는 원심력을 ...2025.05.09
-
프랙탈(기하학구조)의 원리를 이용한 자연환경 (산맥, 혈관)2025.01.171. 프랙탈의 정의와 수학적 원리 프랙탈은 부분이 전체와 닮아있는 구조를 가지며, 이 특징을 자기유사성(self-similarity)이라 합니다. 프랙탈의 주요 예로는 만델브로 집합(Mandelbrot set)과 시어핀스키 삼각형(Sierpinski triangle) 등이 있습니다. 이러한 프랙탈 구조는 간단한 수학적 규칙을 반복적으로 적용함으로써 생성됩니다. 2. 자연에서의 프랙탈 응용 자연계에서 프랙탈 구조는 다양한 형태로 나타납니다. 이는 복잡한 구조를 간단한 법칙으로 설명할 수 있게 해주며, 자연 현상을 이해하는 데 큰 도움...2025.01.17
-
피타고라스 정리를 통한 쌍곡선 방정식 유도2025.01.081. 쌍곡선 방정식 수업 시간에 배운 쌍곡선의 방정식 조건에 대한 교과서의 부족한 증명에 의문을 품고, 조건의 기하적 의미를 밝혀내는 과정에서 피타고라스 정리와 연관이 있음을 깨달았습니다. 이를 바탕으로 피타고라스 정리를 통해 쌍곡선의 방정식을 유도하는 활동을 진행했습니다. 유도 과정에서 쌍곡선과 유사한 식을 얻었지만, 정의와 다르게 'xy' 항이 존재하여 해석에 어려움을 겪었습니다. 탐구 끝에 내가 유도한 식이 회전시킨 쌍곡선의 방정식이었다는 결론을 내리고, 행렬 개념을 통해 xy항이 포함된 이차곡선을 그리는 방법을 탐구하였습니다...2025.01.08
-
르네상스 전쟁 회화의 특징 - 파올로 우첼로와 피에로 델라 프란체스카의 작품 비교2025.01.091. 파올로 우첼로의 <산로마노 기마전투> 파올로 우첼로의 <산로마노 기마전투>는 1400년대 이탈리아의 격동기를 배경으로 한다. 당시 이탈리아에서는 도시들이 세력을 키워나가는 과정에서 격돌이 일어나 전쟁이 끊이질 않았다. 이 그림은 피렌체의 힘과 패권을 관객이 인정하도록 시각적으로 설득시키는 기능을 했다. 우첼로는 원근법과 기하학에 강박적으로 매달렸고, 이러한 태도는 작품에서 잘 드러난다. 전투 장면을 묘사했는데 중앙 투시 도법과 기하학을 지나치게 중시한 나머지 현실적이라기보다는 환상적인 효과를 자아내고 있다. 2. 피에로 델라 ...2025.01.09