
총 89개
-
[생산관리, SCM] 수요예측_비즈니스 성장과 효율성을 위한 전략적 도구2025.05.081. 수요예측의 개념과 중요성 수요예측은 기업과 조직이 제품 또는 서비스의 수요를 정확하게 예측하는 과정으로, 효율적인 운영 및 공급망 관리를 위한 중요한 요소입니다. 수요예측은 기업이 생산 계획, 자재 관리, 재고 관리, 주문 및 공급 계획 등을 최적화하는 데 필수적인 정보를 제공합니다. 정확한 수요예측은 기업의 비용 절감과 생산력 향상을 도모하며, 고객 만족도와 경쟁력을 향상시킬 수 있습니다. 2. 수요예측 기법 종류 수요예측 기법은 기초 수요예측 기법, 통계적 수요예측 기법, 기계학습 기반 수요예측 기법으로 구분됩니다. 기초 ...2025.05.08
-
10대 전략 기술 트렌드2025.05.151. 적응형 AI 적응형 AI 시스템은 새로운 데이터를 바탕으로 런타임과 개발 환경 내 모델을 지속적으로 재교육해 학습함에 따라 초기 개발 단계 당시 존재하지 않거나 예측 불가능한 실제 상황에서 변화가 일어나는 것에 빠르게 적응하는 것을 목표로 한다. 약한 인공지능과 강한 인공지능의 차이, 기계학습과 딥러닝 알고리즘의 개념과 특징, 국내 적용 상황 및 향후 전망 등을 다루고 있다. 2. 산업 클라우드 플랫폼 산업 클라우드 플랫폼은 SaaS, PaaS, IaaS를 통합해 특정 산업의 비즈니스 사용 사례를 지원하는 일련의 모듈식 기능을...2025.05.15
-
현대 컴퓨터 과학의 발전과 알고리즘의 역할2025.05.161. 컴퓨터 과학의 발전과 알고리즘의 역할 현대의 컴퓨터 과학 발전은 꾸준한 연구와 발전의 연속이라 할 수 있습니다. 특히, 알고리즘이 이러한 발전의 핵심이 되어왔다는 것이 많은 학자들의 공통된 견해입니다. 본 장에서는 'The Nature of Computation'이라는 논문을 통해 현대 컴퓨터 과학의 기원과 알고리즘의 중요성에 대하여 자세히 알아보겠습니다. 2. 자연어 처리 분야의 딥러닝 동향 최근 연구에서는 자연 언어 처리(NLP) 분야에서 딥러닝의 동향을 관찰할 수 있습니다. 이 주제에 대하여, 최근 논문 'Attentio...2025.05.16
-
빅데이터와 통계학_탐구보고서_확통(세특)2025.01.111. 빅데이터와 통계학 빅데이터는 기존의 데이터 베이스 관리도구의 데이터 수집, 저장, 관리, 분석의 역량을 넘어서는 대량의 정형 또는 비정형의 데이터 세트 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 정보 통신 기술의 발달, 빅데이터에 대한 효율적인 저장 및 분석의 가능, 국가간 기술 격차 감소로 인해 빅데이터에 대한 관심이 높아지고 있다. 의료산업, 맞춤형 마케팅, 제조업 등 다양한 분야에서 빅데이터가 응용되고 있다. 따라서 빅데이터 시대에 가치를 추출하고 결과를 분석하는 분야와 밀접한 관련이 있는 ...2025.01.11
-
입력장치와 출력장치에 대한 차이점과 음성인식장치의 특징2025.01.171. 입력장치와 출력장치의 정의 및 기능 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하며, 키보드, 마우스, 스캐너 등이 대표적인 예이다. 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 하며, 모니터, 프린터, 스피커 등이 대표적이다. 입력장치와 출력장치는 상호 보완적인 역할을 하여 사용자가 컴퓨터를 효율적으로 사용할 수 있게 한다. 2. 입력장치와 출력장치의 차이점 입력장치는 사용자가 데이터를 컴퓨터에 전달하는 역할을 하는 반면, 출력장치는 컴퓨터가 처리한 데이터를 사용자에게 전달하는 역할을 한다. 이러...2025.01.17
-
인공지능의 개념과 기술 그리고 활용사례에 대해 조사하시오2025.01.181. 인공지능 인공지능은 기계가 인간의 뇌를 기반으로 인간의 지적 행동을 모방하도록 프로그래밍된 소프트웨어 상태로 존재한다. 인공지능은 인공지능 기술을 적용해 현실 세계의 문제를 해결한 결과를 말한다. 즉 기존 제품에 인공지능이 추가된 제품이나 서비스를 의미한다. 2. 기계학습 머신러닝은 원래(처리되지 않은) 데이터에서 패턴을 추출해 지식을 습득하는 능력을 말한다. 기계학습은 학습방법에 따라 지도학습, 비지도학습, 강화학습의 세 가지 주요 범주로 분류할 수 있다. 3. 딥러닝 딥러닝은 숨겨진 층수를 3개 이상의 층으로 두껍게 쌓아 ...2025.01.18
-
모방학습 4단계 상세 설명 및 개인 경험 공유2025.01.291. 모방학습의 4단계 모방학습은 데이터 수집, 데이터 전처리, 정책 학습, 평가 및 개선의 4단계로 구성됩니다. 데이터 수집 단계에서는 전문가나 시범자의 작업을 기록하여 학습에 필요한 데이터를 확보합니다. 데이터 전처리 단계에서는 수집된 데이터를 정제하고 구조화하는 과정이 필요합니다. 정책 학습 단계에서는 전처리된 데이터를 바탕으로 모델이 최적의 행동 정책을 학습하게 됩니다. 마지막으로 평가 및 개선 단계에서는 학습된 모델의 성능을 평가하고, 필요에 따라 모델을 개선하는 과정이 이루어집니다. 2. 모방학습 적용 사례 및 경험 프로...2025.01.29
-
기계 학습 - 기술부채의 고금리 신용카드 [논문리뷰]2025.04.261. 기술부채 기술부채는 실행속도와 엔지니어링 품질 사이의 딜레마를 지칭하는 것으로, 이를 적절하게 관리하지 않으면 유지보수 비용의 가파른 상승과 깨지기 쉬운 시스템 등으로 인해 혁신의 속도를 상당부분 늦출 수 있다. 전통적인 방식으로 이를 해결하기 위한 방법에는 리팩토링, 단위 테스트 범위 확대, 의존성 감소, 더 이상 사용되지 않는 코드의 삭제, 엄격한 API 관리와 체계적인 문서화 등이 있다. 2. 기계학습 시스템의 기술부채 기계학습 시스템에는 자체적으로 내재된 부채가 있어서 이를 제대로 관리하지 못할 경우 의도된 기대에서 멀...2025.04.26
-
서평 - 인공지능에 대한 현대적 접근법2025.05.071. 인공지능(AI) 및 기계학습 기술 인공지능(AI)과 기계학습 기술은 이미 우리의 삶에 깊숙이 스며들어 있으며, 이들 기술을 점차 더 사용하거나 그 영향을 받고 있다. 실용적인 음성 인식, 기계 번역, 자율주행 차량, 가정용 로봇 등이 AI 구현 사례에 포함된다. 2. 『인공지능 : 현대적 접근법』 이 책은 인공지능과 기계학습이 정확히 무엇을 할 수 있고 무엇을 달성할 수 없는지에 대한 명확한 이해를 제공한다. 중요한 개념들은 명확한 비유와 이해하기 쉬운 언어로 설명된다. 3. 기계 지성(sentience)과 모방 우리는 일반 ...2025.05.07
-
퍼셉트론의 한계에 대한 논의2025.05.081. 퍼셉트론의 한계 퍼셉트론은 데이터에서 학습하고 정보를 분류하는 능력으로 주목받는 인공신경망이지만, 실제 적용을 제한하는 특정 한계가 있다. 주요 한계로는 선형적으로 분리 가능한 문제로 제한, 느린 수렴 속도, 초기 가중치에 민감, 이진 분류로 제한 등이 있다. 이러한 한계를 극복하기 위해 비선형 문제와 다중 클래스 분류를 처리할 수 있는 다층 퍼셉트론과 같은 보다 복잡한 신경망이 개발되었다. 1. 퍼셉트론의 한계 퍼셉트론은 선형 분리 가능한 문제만 해결할 수 있다는 한계가 있습니다. 이는 퍼셉트론이 입력 데이터를 단순히 선형 ...2025.05.08