
총 5개
-
문명과 수학 1부 수의 시작 줄거리와 감상2025.03.201. 문명과 수학 1부 수의 시작 1.1. 수학의 근원과 발전 수학은 인류 문명의 발전과 함께 끊임없이 발전해왔다. 수학의 기원은 매우 오래되어 그 정확한 시기를 특정하기는 어렵지만, 문자 기록이 등장하기 시작한 고대 문명에서부터 수학의 기초가 형성되기 시작했다. 고대 이집트, 메소포타미아, 중국, 인도 등의 문명권에서는 각자의 문화와 환경에 맞는 고유한 수학 체계를 발전시켜왔다. 고대 이집트에서는 산술을 중심으로 하는 실용적 수학이 발달하였고, 메소포타미아에서는 천문수학과 대수학이 발전하였다. 중국에서는 음양 사상과 천문 관...2025.03.20
-
페르마의 마지막 정리 독후감 써줘2024.08.161. 서론 1.1. 페르마의 마지막 정리의 역사와 중요성 페르마의 마지막 정리의 역사와 중요성은 다음과 같다. 1637년, 프랑스 수학자 피에르 드 페르마는 자신이 소유한 수학서적 여백에 "x^n + y^n = z^n (n > 2)"라는 방정식에 대한 "놀라운 증명"을 발견했다고 적었다. 이는 '피타고라스의 정리'를 일반화한 것으로, 피타고라스의 정리는 완벽한 정수의 해를 가지는 반면 페르마의 마지막 정리는 그렇지 않다는 것이 핵심이다. 이후 이 정리는 '페르마의 마지막 정리'로 알려지게 되었다. 페르마는 증명 방법을 남겼...2024.08.16
-
이상한 수학책이란 책의 독후감을 써줘2024.08.121. 교육평가 과제 1.1. 수행평가 주제 및 목표 수행평가 주제 및 목표는 재미있는 수학적 지식을 접하게 하여, 이를 조사하면서 수학에 대해 흥미를 가지게 하는 것이다. 학생들이 수학책을 읽고 새롭게 알게 된 수학적 지식을 발표하는 것이 주제이며, 수학에 대한 관심을 높이는 것이 목표라고 할 수 있다. 수학에 대한 편견을 가지고 있는 학생들에게 다양한 수학 지식을 소개함으로써 수학이 단순히 문제를 풀이하는 것 이상의 재미있고 의미 있는 학문이라는 인식을 심어주고자 한다. 이를 통해 학생들이 수학에 대한 흥미와 관심을 가질 수 있...2024.08.12
-
페르마의 마지막정리2024.11.051. 페르마의 마지막 정리 1.1. 개요 페르마의 마지막 정리의 개요는 다음과 같다. 이 정리는 아마추어 수학자였던 프랑스 수학자 피에르 드 페르마(Pierre de Fermat)가 발견한 것으로, 디오판토스의 《산술(Arithmetica)》 책의 여백에 적어놓은 것이다. 페르마는 "n이 3 이상의 정수일 때, xn+yn=zn을 만족하는 양의 정수 x, y, z는 존재하지 않는다."라고 주장하면서, 자신이 이를 증명했다고 하였으나 여백의 공간이 부족하여 증명 내용을 기록하지 못했다고 밝혔다. 이 정리는 피타고라스 정리의 일반화...2024.11.05
-
고등수1 내용과 관련지어서 페르마의 마지막 정리 독후감을 써줘2025.04.101. 페르마의 마지막 정리 독후감 1.1. 페르마의 마지막 정리 책 소개 페르마의 마지막 정리는 피타고라스의 정리에서 파생된 문제로서 수학 정수론 영역에서는 증명하기 가장 어려운 문제로 꼽힌다. 이 '페르마의 마지막 정리'라는 책은 페르마의 정리와 그것을 증명해 낸 앤드루 와일즈의 이야기를 다루고 있다. 아마추어 수학자였던 페르마가 디오판토스의 《산술(Arithmetica)》이라는 책 여백에 "'n이 3 이상의 정수일 때, xn+yn=zn을 만족하는 양의 정수 x, y, z는 존재하지 않는다.'는 정리의 감탄할 만한 증명방법을...2025.04.10