총 12개
-
미적분 에펠탑2024.09.231. 미적분과 건축 1.1. 미적분이란? 미적분은 미분과 적분의 수학적 이론을 말하며, 1670년대 후반에 라이프니츠가 만들었고, 약 10년 정도 후에 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠나 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피[해석학]를 구하기 위해서 사용되었다. 우리가 살고 있는 세상은 모든 것이 움직이고 변한다. 미분은 이처럼 움직이는 대상을 다루며, 반면 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상을 다룬다. 1...2024.09.23
-
수학 주제탐구 보고서2024.09.261. 수학적 사고의 필요성 1.1. 일상생활 속 수학 원리 1.1.1. 바코드 안전장치 '체크숫자' 우리는 일상생활에서 숫자와 밀접하게 관련되어있다고 할 수 있다. 출생 신고 시 부여받는 주민등록번호부터 학교와 직장에서의 번호, 전화번호, 아파트 동수와 호수, 버스 번호, 전철과 도로 등 우리는 숫자와 늘 함께 살아가고 있기 때문이다. 슈퍼마켓과 서점에서 구입하는 대부분의 상품과 서적에도 숫자가 붙어있는데, 이처럼 각각의 상품과 서적에 부여된 숫자는 여러 개의 검은 막대와 흰 막대로 이루어진 '바코드'의 형태로 나타난다. 바코...2024.09.26
-
건축 속의 미적분2024.11.071. 미적분과 건축 1.1. 미적분이란? 미적분이란 미분과 적분의 수학적 이론을 말하며, 1670년대 후반에 라이프니츠가 만들었고, 약 10년 정도 후에 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠나 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피[해석학]를 구하기 위해서 쓰였다. 우리가 살고 있는 세상은 모든 것이 움직이고 변하는데, 미분은 이처럼 움직이는 대상을 다루며, 반면 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상을 다룬다....2024.11.07
-
건축 미분2024.10.261. 미적분의 정의와 발전 1.1. 미분과 적분의 역사 미분과 적분의 역사는 수학사에서 매우 중요한 위치를 차지한다. 미분과 적분은 17세기 영국의 수학자 뉴턴(Newton, I.)과 독일의 수학자 라이프니츠(Leibniz, G. W.)에 의해 체계화되었다." 뉴턴은 미분계수라는 개념을 도입하여 미분을 설명하였는데, 이는 라이프니츠의 방법보다 약 10년 정도 앞선 것이었다. 라이프니츠는 함수 f(x)에서 x가 무한히 작은 증분일 때 f(x)의 변화량을 구하는 방법을 제시하였다. 그러나 논문의 발표 순서는 라이프니츠가 앞섰다. 이로...2024.10.26
-
건축 미적분2024.11.011. 미적분의 개념과 역사 1.1. 미적분이란? 미적분이란 미분과 적분의 수학적 이론을 말한다. 미적분은 1670년대 후반에 라이프니츠가 만들었고, 약 10년 정도 후에 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠나 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피[해석학]를 구하기 위해서 쓰였다. 우리가 살고 있는 세상은 모든 것이 움직이고 변한다. 미분은 이처럼 움직이는 대상을 다루며, 반면 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상...2024.11.01
-
강하선 사이클로이드2024.10.081. 사이클로이드 곡선 1.1. 사이클로이드 곡선의 정의 및 특성 사이클로이드 곡선은 일정한 반지름을 갖는 원 위에 한 점을 찍고, 그 원을 한 직선 위에서 굴렸을 때 그 점이 진행하면서 그리는 곡선이다. 다시 말해, 자전거의 바퀴에 점을 찍고 굴러갈 때 그 점이 그리는 궤적이 사이클로이드 곡선이다. 사이클로이드 곡선은 수학과 물리학에서 매우 중요한 의미를 가진다. 특히 미적분학의 발전에 큰 도움을 주었으며, 18세기 수학자들 사이에서 많은 관심의 대상이 되었다. 예를 들어 갈릴레오는 이 곡선의 중요성을 처음 지적하면서 다리의...2024.10.08
-
유명한 건축물 속 수학적 원리2024.11.231. 건축과 수학 1.1. 수학의 건축 활용 1.1.1. 미적분의 건축 적용 미적분은 수학적 기법 중 하나로, 건축에서는 구조물의 설계와 디자인에 널리 활용되고 있다. 건축가들은 미적분을 통해 건축물의 연속성과 유동성을 표현하고자 한다. 피터 아이젠만의 경우 건물과 랜드스케이프가 연속적인 관계를 갖는 프로젝트를 통해 이를 보여주었다. 그의 뉴욕 IFCCA 도시 설계안과 생 쟈크 드 콤포스텔라 문화 센터 계획에서는 환경의 주름으로서의 건물이라는 개념을 제시하였다. 여기서 연속성과 유동성은 미분적 분석 그래프에 의해 정당화된다....2024.11.23
-
유명한 건축물 속 삼각형을 이용한 수학적 원리2024.11.231. 미적분과 건축 1.1. 미적분이란? 미적분은 미분과 적분의 수학적 이론을 말하며, 1670년대 후반에 라이프니츠가 만들었고, 약 10년 정도 후에 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠나 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피[해석학]를 구하기 위해서 쓰였다. 우리가 살고 있는 세상은 모든 것이 움직이고 변하는데, 미분은 이처럼 움직이는 대상을 다루며, 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상을 다룬다. 미적분은 ...2024.11.23
-
유명한 건축물 속의 수학적 원리2024.11.231. 수학과 건축 1.1. 미적분과 건축 1.1.1. 미적분의 개념 미적분은 미분과 적분의 수학적 이론을 말하며, 17세기 후반에 라이프니츠에 의해 만들어졌고, 약 10년 후에 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠와 뉴턴 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피 등을 구하기 위해 미적분을 사용하였다. 미분은 움직이는 대상을 다루는 것이며, 적분은 도형의 넓이, 부피와 같이 움직이지 않는 대상을 다룬다. 움직이는 대상을 연구하는 미분은 17세...2024.11.23
-
건축 적분2024.10.291. 건축 속 미적분 1.1. 미적분이란? 미적분이란 변화하는 대상을 다루는 수학의 한 분야로, 미분과 적분의 이론에 관한 것이다. 17세기 후반 라이프니츠가 만들었고 약 10년 후 뉴턴의 유율법이 이를 활용하였다. 미분은 순간적인 변화율을 다루고, 적분은 도형의 넓이나 부피와 같이 변하지 않는 대상을 다룬다. 과거에는 정적인 대상만을 연구하던 수학이 동적인 대상으로 그 범위가 확장되었다는 점에서 미적분의 등장은 큰 의미를 가진다. 어떤 사물이나 현상이 시간에 따라 변화하는 모습을 수학적으로 해석할 수 있게 된 것이다. 움직임...2024.10.29