총 18개
-
의학 미적분 주제 탐구2024.09.111. 함수의 역사 및 고찰 1.1. 라이프니츠 라이프니츠는 "변량 X에 함수란, X에 관한 식이다."라는 말을 남겼다. X와 Y를 분리한 후 그것을 X에 대한 식으로 바꾸었다. 수학에서 뉴턴과는 별도로 미적분학의 방법을 창안하였고, 물리학에서는 에너지 보존의 법칙을 예견했다. 또 지질학, 생물학, 역사학에 대해서도 연구했다. 그의 철학에 따르면, 세계는 무수히 많은 단일불가분(單一不可分)의 실체, 즉 능동적인 힘의 단위로서 자신 속에 전(全)우주를 표상하는 '우주의 거울'로서의 모나드로 구성된다. 1.2. 오일러 오일러는 스위스의...2024.09.11
-
미분실생활2024.09.221. 미분의 실생활 활용 1.1. 미분의 개념 및 역사 미분의 개념 및 역사는 다음과 같다. 미분이란 움직이고 변화하는 대상의 "순간적인 변화"를 서술하는 수학적인 개념이다. 미분은 영국의 뉴턴과 독일의 라이프니츠에 의해 발견되어 체계화된 수학의 한 분야이다. 뉴턴은 운동과 시간에 대한 관계를 표현할 수 있는 수학적 도구로 미분을 개발했고, 라이프니츠는 연속적인 과정을 설명하고자 미분 개념을 도입했다. 뉴턴은 수학적 도구로서의 미분을 통해 곡선의 기울기와 넓이 사이의 관계를 해명할 수 있었고, 미분과 적분의 기본성질을 대수함수...2024.09.22
-
미분적분학 연습문제2024.10.021. 미적분 수업 사례 1.1. 미적분 1 예시 1.1.1. '작음의 다른 정도를 이용한 미분법 탐구' 함수에서 미지수의 미소 변화량을 작은 조각이라고 할 때 기울기를 구하고자 하는 점과 미지수의 미소 변화량과의 관계식에서 나오는 생략될 수 있는 부분을 제시하면서 이 원리가 다양한 차수에서도 적용될 수 있음을 설명했다"". 미분의 기울기는 좌표축의 증가와 감소로 인해 정해지는데 이와 달리 독립적으로 일어나는 상수를 미분 과정에서 처리하는 방법을 더해진 상수, 곱해진 상수로 나누어 초기함수의 함숫값과 도함수의 관계를 표와 그래프...2024.10.02
-
효소반응 미적분2024.10.281. 미분의 역사와 활용 1.1. 미분의 역사 1.1.1. 아르키메데스의 구적법 아르키메데스(기원전 287 - 기원전 212년)는 고대 그리스의 수학자이자 발명가로, 미분적분학의 기초가 되는 구적법을 고안한 것으로 유명하다. 아르키메데스는 구와 원기둥의 부피를 계산하는 방법을 발견했는데, 이는 고대 그리스 수학의 대표적인 성과 중 하나이다. 그는 구의 부피가 외접하는 원기둥의 2/3배라는 사실을 밝혀냈다. 이를 통해 구의 부피를 구할 수 있게 되었다. 아르키메데스는 또한 다각형의 면적을 계산하는 방법도 고안했다. 그는 다각...2024.10.28
-
유리함수 실생활2024.10.271. 2024학년도 3학년 1학기 [심화수학1] 평가 계획 1.1. 평가의 목적 평가의 목적은 사회 및 자연 현상을 수학적으로 관찰, 분석, 조직, 표현하는 경험을 통하여 방정식과 부등식, 지수함수와 로그함수, 삼각함수, 수열과 극한, 미분에 관련된 개념, 원리, 법칙과 이들 사이의 관계를 이해하고 수학의 기능 습득력을 평가함으로써 학생의 전인적 성장을 도모할 수 있는 교수·학습 개선의 정보를 얻고자 하는 것이다. 또한 지필평가를 이용하여 심화수학1 교과 성취기준에 대한 지식, 기능, 태도 등을 고르게 평가함으로써 학생들의 수학 ...2024.10.27
-
수학 학사논문2024.10.151. 뉴턴과 라이프니츠의 미적분 1.1. 서론 17세기의 미적분의 두 가지 주요한 발견으로부터 시작되어 강력한 새로운 무한소 해석학의 종합을 가능하게 하였다. 그 두 가지 주요한 발견 중 하나는 접선법과 넓이를 구하는 방법의 통합으로 이를 바탕으로 뉴턴과 라이프니츠는 미적분의 기본 알고리즘을 추출할 수 있었다. 다른 하다는 무한 급수 기술의 발달과 응용을 들 수 있다. 미적분의 통합과 무한급수의 전개 방법의 동시적인 발달로 인해 서로를 강화시켜 적용의 폭을 넓혔다. 예를 들어 초기 미적분법을 초월함수에 적용하기 위해 이런 초월함수...2024.10.15
-
미적분의 쓸모와 건축 설계 분석2024.10.141. 미적분의 개념과 역사 1.1. 미적분의 정의와 발전 과정 미적분의 정의와 발전 과정은 다음과 같다. 미적분은 '미분'과 '적분'의 수학적 이론을 말하며, 17세기 초반 라이프니츠와 뉴턴에 의해 발전되었다. 라이프니츠는 1670년대 후반에 미적분의 체계적인 이론을 만들었고, 약 10년 후 뉴턴은 유율법을 고안하여 미적분을 이용하였다. 라이프니츠와 뉴턴 모두 무한소 개념을 다루기 위해 미적분을 고안하였으며, 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피 등을 구하는데 활용되었다. 전통적으로 수학은 고...2024.10.14
-
건축 미분2024.10.141. 미적분의 이해 1.1. 미적분의 개념과 역사 미적분의 개념과 역사는 다음과 같다. 미적분은 미분과 적분의 수학적 이론을 말하며, 17세기 후반에 독일의 수학자 라이프니츠가 만들었고, 약 10년 정도 후에 영국의 수학자 뉴턴은 유율법을 만들어 미적분에 이용하였다. 라이프니츠와 뉴턴의 방법 모두 무한소 문제를 풀기 위한 것이었으며 곡선의 접선, 호의 길이, 곡률 반경, 무게중심, 면적(넓이), 부피 등을 구하기 위해 쓰였다." 우리가 살고 있는 세상은 모든 것이 움직이고 변한다. 미분은 이처럼 움직이는 대상을 다루는 반면, ...2024.10.14
-
미적분 수학자2024.11.191. 17세기 미적분학을 빛낸 수학자 1.1. 뉴턴(I. Newton, 영국, 1642 - 1727) 뉴턴(I. Newton, 영국, 1642 - 1727)은 미적분학 창시자의 한 사람이며 『프린키피아 마테마티카』의 저자로, 뉴턴의 정신과 인격은 모든 역사가에게 문제를 던져 주고 있다. 그는 불행한 유년 시절로 인하여 편협하고 고독한 사람이 되었고 그의 행동의 원천은 그 시대의 사람들에게도 알려져 있지 않다. 뉴턴이 출생하기 3개월 전에 아버지가 사망하고 어머니는 젖먹이가 두 살이 되기도 전에 재혼하여 고령의 할머니 손에서 외롭게...2024.11.19
-
라이프니츠가 미적분에 기여한 것2024.11.191. 미적분학의 발전과 역사 1.1. 서론 1.1.1. 연구 목적 및 필요성 수학이라는 학문은 인간이 만들고 발전시킨 학문으로서 다른 어떤 학문보다도 우리의 일상에 밀접히 스며들어 있으며, 소립자의 작용부터 우주의 운행에 이르기까지 세상의 모든 법칙을 정확하게 표현하는데 사용된다. 그 중에서 미적분학은 고등학교 수학의 핵심이자 대학 수학의 기초로서 여러 자연과학, 공학, 경제학, 사회학 등에 광범위하게 이용되고 있다. 따라서 미적분학을 왜 배워야 하는지, 그리고 그것이 우리의 삶과 얼마나 밀접한 관련이 있는지를 모르는 학생들의 ...2024.11.19