
총 21개
-
신장트리의 정의와 활용분야2024.09.171. 알고리즘의 개념과 발전 1.1. 알고리즘의 정의와 특성 알고리즘의 정의와 특성은 다음과 같다. 알고리즘은 어떤 문제를 해결하기 위한 일련의 명확하고 체계적인 단계들의 집합이다. 즉, 문제를 해결하기 위한 일련의 절차와 규칙을 의미한다. 알고리즘은 컴퓨터 과학과 수학 분야에서 핵심적인 개념으로, 데이터 처리, 계산 수행, 의사 결정 등을 위해 사용된다. 알고리즘의 주요 특성은 다음과 같다. 첫째, 알고리즘은 유한성을 가져야 한다. 즉, 유한한 단계를 거쳐 반드시 종료되어야 한다. 둘째, 알고리즘은 명확성을 가져야 한다. ...2024.09.17
-
무인단속 카메라와 미분2024.09.181. 서론 1.1. 미분의 개념과 활용 미분의 개념과 활용은 다음과 같다. 미분이란 어떤 운동이나 함수의 순간적인 움직임을 서술하는 방법이다. 수학에서는 함수의 그래프를 그릴 때, 어떤 함수의 도함수를 구할 때 등 널리 사용된다. 어떠한 함수 f(x)가 있을 때 f(x)의 도함수 f'(x)는 f(x)의 순간변화율의 함수값을 가지므로 극한을 사용하여 f'(x)= lim _{h-> 0} {{f(x+h)-f(x)} over {h}} 라는 간단한 식을 얻을 수 있다. 모든 x에 대해서 f'(x)의 값이 존재한다면 f(x)는 미분가능하다...2024.09.18
-
수학의 힘 독후감 올리버 존슨2024.10.181. 소개 이 책의 저자는 올리버 존슨 교수로, 브리스틀대학교 정보이론 교수이자 통계과학연구소 소장이다. 그는 전 케임브리지대학교 연구원이자 케임브리지 크라이스트칼리지의 선임연구원으로도 활동했으며, BBC 라디오에 자주 출연하고 여러 유명 매체에 기고하고 있다. 특히 코로나19 팬데믹 기간 동안 자신의 트위터 계정을 통해 코로나 바이러스 관련 통계를 쉽게 해설해주면서 4만 명이 넘는 팔로워를 거느리게 되었다. 이 책은 수학이 세상을 이해하고 문제를 해결하는 데 있어 어떤 강력한 도구가 될 수 있는지를 보여준다. 저자는 교과서적인 ...2024.10.18
-
일상 생활에서 접할 수 있는 통계2024.10.061. 서론 1.1. 통계학의 중요성 통계학의 중요성은 다양한 측면에서 찾을 수 있다. 통계학은 자연현상뿐만 아니라 사회현상도 한눈에 알아볼 수 있게 설명할 수 있는 중요한 수단이기 때문이다. 선수 개개인의 기록이 아닌 팀의 기록들을 모아 분석을 실시하면 승률과 같은 통계 자료들을 얻을 수 있을 뿐만 아니라 이를 기초로 경기 전략을 세울 수 있다. 또한 각 종목들을 발전시키는데 통계학이 크게 이바지할 수 있다. 스포츠 분야에서는 기록이 승부를 가르는 만큼 통계적 수치가 매우 중요하다. 영화 <머니볼>에서 보듯이 통계학을 적극적으...2024.10.06
-
일상 생활에서 접할 수 있는 통계2024.10.061. 서론 일상은 매우 감성적으로 흘러가는 것 같지만 사실상 우리 생활 곳곳에 통계가 숨어 있다. 자연현상도 통계로 이야기할 수 있고 인간 사이에서 일어나는 사회현상도 통계로 이야기할 수 있다. 또 통계는 어느 한 시점에서 나오는 결과로 인한 통계가 있고, 특정 기간 내의 결과로 나오는 결과로 인한 통계가 있다. 이러한 통계들을 나타내는 것들은 무엇이 있을까. 이번 과제에서는 영화 '머니볼'을 감상해보고 관련하여 통계학이 일상생활에서 어떻게 적용되는지에 대해 생각해보도록 하겠다. 2. 영화 '머니볼'의 주요 내용 2.1. 영화 요...2024.10.06
-
옴의법칙2024.10.201. 실험 목적 및 개요 1.1. 옴의 법칙 확인을 위한 실험 옴의 법칙 확인을 위한 실험은 회로 내 저항의 특성을 이해하고 전압, 전류, 저항 간의 관계를 확인하는 것이 목적이다. 실험에서는 표시된 저항값과 실제 측정한 저항값을 비교하고, 저항에 따른 전압과 전류의 변화를 관찰하여 옴의 법칙이 성립하는지를 확인하였다. 먼저 표시저항 33과 100의 측정값을 식 (1)을 이용하여 계산한 결과, 표시저항 33의 경우 실험값과 계산값이 정확히 일치하였다. 하지만 표시저항 100의 경우 실험값과 계산값의 차이가 8%로 나타나, 표시된...2024.10.20
-
파레토 그래프2024.11.161. QC 수법 7가지 도구 1.1. 정의 QC 수법 7가지 도구란 현장에서 발생하는 품질이나 원가, 생산량 등의 문제를 해결하는 데 도움이 되는 기초적인 분석 도구 7가지를 말한다. 이 7가지 도구는 "적은 데이터로부터 가능한 신뢰성이 높은 객관적인 정보를 얻는데 가장 유효한 수단"으로서 품질의 개선 및 관리의 제반 활동에 유용한 도구이며, 데이터의 기초적인 정리 방법으로 널리 사용된다. 현장에서 QC 수법 7가지만 자유자재로 활용이 가능한 수준이라면 매우 높은 경지의 관리를 하고 있다고 생각된다. 1.2. 종류 1.2.1. ...2024.11.16
-
미적분으로 바라본 하루 생명과학2024.11.151. 미적분으로 바라본 하루 일상 속 어디에나 있는 수학 찾기 1.1. 일상생활 속 미적분의 발견 1.1.1. 함수와 그래프 함수와 그래프는 수학의 구성 요소로 전자기 유도, 공기 속 냄새, 보이지 않는 주파수, 물체(로켓, 포환던지기 등)의 포물선 운동 등 어디에서나 찾아볼 수 있다. 일상생활 속에서 다양한 함수와 그래프를 발견할 수 있다는 것이다. 로그 함수를 듣고 삼각 함수를 볼 수 있다. 저자는 어떻게 유리 함수가 토머스 에디슨을 좌절하게 했을까에 대해 설명한다. 에디슨의 발전소가 V만큼 전기 에너지, 전압을 만들어내...2024.11.15
-
유리함수 무리함수 교수지도안2024.10.221. 단원의 개관 1.1. 교재 및 단원명 교재명은 "고등학교 수학Ⅱ(김원경 외 12인, (주)비상교육)"이다. 이 단원은 수학과 교육과정의 "함수" 영역에 해당하는데, 대단원은 "Ⅱ. 함수"이며, 중단원은 "1. 함수", 소단원은 "02. 합성함수"이다. 이 단원에서는 함수의 개념을 명확히 하고 이를 바탕으로 합성함수와 역함수를 정의한다. 이를 통해 함수적 사고 방법을 터득하여 수학의 여러 가지 내용을 이해하고 복잡한 함수들을 다룰 수 있는 능력을 기르게 한다. 1.2. 단원의 이론적 배경 함수의 개념은 변화 현상을 좌표평면...2024.10.22
-
순열과 조합을 이용한 선거 조사2024.12.011. 이산 수학 1.1. 성격 이산 수학은 수학의 기본적인 개념, 원리, 법칙을 활용하여 실생활에서 일어나는 유한이나 불연속의 이산 상황의 문제를 수학적으로 사고하고, 논리적으로 사고하여 합리적으로 문제를 해결하는 능력과 태도를 기르게 하는 과목이다. 이 과목은 10단계까지의 학습 내용을 기반으로 하여 이루어지며, 그 목표는 이산적인 문제의 기본적인 개념, 원리, 법칙을 활용하여 실생활에서 일어나는 여러 가지 문제를 수학적으로 사고하고 해결할 수 있는 능력을 기르는 것이다. 이산 수학은 선택과 배열, 그래프, 알고리즘, 의사 결정...2024.12.01