1. 미분과 전미분
1.1. 미분의 정의
함수 (x)가 미분 가능인 경우에 y=f(x)라 놓고 x와 y의 증분을 각각 Δx,Δy로 놓으면, {Δy / Δx = f'(x)}이다. 이 식은Δy=f'(x)Δx+εΔx로 고쳐 쓸 수 있다. 그리고εΔx는 Δx보다 고위의 무한소이므로Δy의 주부분은 f'(x)Δx로 생각할 수 있고, 이것을 함수 y=f(x)의 미분이라 하고, dy로 나타낸다. 즉, dy=f'(x)Δx, 여기서 독립변수 x의 임의의 증분 Δx를 그 미분이라 하고 Δx=dx(단, ≠0)로 규약하면 dy=f'(x)dx로 쓸 수 있...
2024.10.17